Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an42 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
an42 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 653 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) | |
2 | ancom 461 | . . 3 ⊢ ((𝜓 ∧ 𝜃) ↔ (𝜃 ∧ 𝜓)) | |
3 | 2 | anbi2i 623 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
4 | 1, 3 | bitri 274 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an43 655 an33rean 1482 brecop2 8588 supmo 9199 infmo 9242 aceq1 9861 dfiso2 17472 eulerpartlemt0 32322 isbasisrelowllem1 35512 isbasisrelowllem2 35513 ifp1bi 41077 |
Copyright terms: Public domain | W3C validator |