MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an42 Structured version   Visualization version   GIF version

Theorem an42 653
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
an42 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜃𝜓)))

Proof of Theorem an42
StepHypRef Expression
1 an4 652 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜓𝜃)))
2 ancom 460 . . 3 ((𝜓𝜃) ↔ (𝜃𝜓))
32anbi2i 622 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) ↔ ((𝜑𝜒) ∧ (𝜃𝜓)))
41, 3bitri 274 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒) ∧ (𝜃𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  an43  654  an33rean  1481  brecop2  8558  supmo  9141  infmo  9184  aceq1  9804  dfiso2  17401  eulerpartlemt0  32236  isbasisrelowllem1  35453  isbasisrelowllem2  35454  ifp1bi  41007
  Copyright terms: Public domain W3C validator