Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem15 Structured version   Visualization version   GIF version

Theorem prtlem15 36816
Description: Lemma for prter1 36820 and prtex 36821. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
prtlem15 (Prt 𝐴 → (∃𝑥𝐴𝑦𝐴 ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → ∃𝑧𝐴 (𝑢𝑧𝑣𝑧)))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣,𝑢)

Proof of Theorem prtlem15
StepHypRef Expression
1 anabs7 660 . . . . . . 7 (((𝑤𝑥𝑤𝑦) ∧ ((𝑢𝑥𝑣𝑦) ∧ (𝑤𝑥𝑤𝑦))) ↔ ((𝑢𝑥𝑣𝑦) ∧ (𝑤𝑥𝑤𝑦)))
2 an43 654 . . . . . . . 8 (((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) ↔ ((𝑢𝑥𝑣𝑦) ∧ (𝑤𝑥𝑤𝑦)))
32anbi2i 622 . . . . . . 7 (((𝑤𝑥𝑤𝑦) ∧ ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦))) ↔ ((𝑤𝑥𝑤𝑦) ∧ ((𝑢𝑥𝑣𝑦) ∧ (𝑤𝑥𝑤𝑦))))
41, 3, 23bitr4ri 303 . . . . . 6 (((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) ↔ ((𝑤𝑥𝑤𝑦) ∧ ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦))))
5 prtlem14 36815 . . . . . . . 8 (Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → ((𝑤𝑥𝑤𝑦) → 𝑥 = 𝑦)))
6 an3 655 . . . . . . . . 9 (((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → (𝑢𝑥𝑣𝑦))
7 elequ2 2123 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑣𝑥𝑣𝑦))
87anbi2d 628 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑢𝑥𝑣𝑥) ↔ (𝑢𝑥𝑣𝑦)))
96, 8syl5ibr 245 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → (𝑢𝑥𝑣𝑥)))
105, 9syl8 76 . . . . . . 7 (Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → ((𝑤𝑥𝑤𝑦) → (((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → (𝑢𝑥𝑣𝑥)))))
1110imp4a 422 . . . . . 6 (Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → (((𝑤𝑥𝑤𝑦) ∧ ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦))) → (𝑢𝑥𝑣𝑥))))
124, 11syl7bi 254 . . . . 5 (Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → (((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → (𝑢𝑥𝑣𝑥))))
1312expdimp 452 . . . 4 ((Prt 𝐴𝑥𝐴) → (𝑦𝐴 → (((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → (𝑢𝑥𝑣𝑥))))
1413rexlimdv 3211 . . 3 ((Prt 𝐴𝑥𝐴) → (∃𝑦𝐴 ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → (𝑢𝑥𝑣𝑥)))
1514reximdva 3202 . 2 (Prt 𝐴 → (∃𝑥𝐴𝑦𝐴 ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → ∃𝑥𝐴 (𝑢𝑥𝑣𝑥)))
16 elequ2 2123 . . . 4 (𝑥 = 𝑧 → (𝑢𝑥𝑢𝑧))
17 elequ2 2123 . . . 4 (𝑥 = 𝑧 → (𝑣𝑥𝑣𝑧))
1816, 17anbi12d 630 . . 3 (𝑥 = 𝑧 → ((𝑢𝑥𝑣𝑥) ↔ (𝑢𝑧𝑣𝑧)))
1918cbvrexvw 3373 . 2 (∃𝑥𝐴 (𝑢𝑥𝑣𝑥) ↔ ∃𝑧𝐴 (𝑢𝑧𝑣𝑧))
2015, 19syl6ib 250 1 (Prt 𝐴 → (∃𝑥𝐴𝑦𝐴 ((𝑢𝑥𝑤𝑥) ∧ (𝑤𝑦𝑣𝑦)) → ∃𝑧𝐴 (𝑢𝑧𝑣𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wrex 3064  Prt wprt 36812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-in 3890  df-nul 4254  df-prt 36813
This theorem is referenced by:  prter1  36820
  Copyright terms: Public domain W3C validator