Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  an52ds Structured version   Visualization version   GIF version

Theorem an52ds 32330
Description: Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
an52ds.1 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
an52ds (((((𝜑𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂)

Proof of Theorem an52ds
StepHypRef Expression
1 an32 644 . . . 4 (((𝜑𝜓) ∧ 𝜏) ↔ ((𝜑𝜏) ∧ 𝜓))
21anbi1i 622 . . 3 ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜃) ↔ (((𝜑𝜏) ∧ 𝜓) ∧ 𝜃))
3 an52ds.1 . . . 4 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
43an42ds 32329 . . 3 (((((𝜑𝜓) ∧ 𝜏) ∧ 𝜃) ∧ 𝜒) → 𝜂)
52, 4sylanbr 580 . 2 (((((𝜑𝜏) ∧ 𝜓) ∧ 𝜃) ∧ 𝜒) → 𝜂)
65an42ds 32329 1 (((((𝜑𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  an62ds  32331  dfufd2  33365
  Copyright terms: Public domain W3C validator