![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > an52ds | Structured version Visualization version GIF version |
Description: Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
an52ds.1 | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
an52ds | ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 644 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) ↔ ((𝜑 ∧ 𝜏) ∧ 𝜓)) | |
2 | 1 | anbi1i 622 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜃) ↔ (((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜃)) |
3 | an52ds.1 | . . . 4 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
4 | 3 | an42ds 32329 | . . 3 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜃) ∧ 𝜒) → 𝜂) |
5 | 2, 4 | sylanbr 580 | . 2 ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜃) ∧ 𝜒) → 𝜂) |
6 | 5 | an42ds 32329 | 1 ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: an62ds 32331 dfufd2 33365 |
Copyright terms: Public domain | W3C validator |