![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 643 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an32s 651 3anan32 1095 indifdirOLD 4281 inrab2 4303 reupick 4314 difxp 6162 imadif 6631 respreima 7069 dff1o6 7278 dfoprab2 7472 f11o 7944 xpassen 9084 dfac5lem1 10140 kmlem3 10169 qbtwnre 13204 elioomnf 13447 modfsummod 15766 pcqcl 16818 tosso 18404 subgdmdprd 19984 pjfval2 21636 opsrtoslem1 21992 fvmptnn04if 22744 cmpcov2 23287 tx1cn 23506 tgphaus 24014 isms2 24349 elcncf1di 24808 elii1 24851 isclmp 25017 bddiblnc 25764 dvreslem 25831 dvdsflsumcom 27113 upgr2wlk 29475 upgrtrls 29508 upgristrl 29509 fusgr2wsp2nb 30137 cvnbtwn3 32091 ssmxidllem 33180 ordtconnlem1 33519 1stmbfm 33874 eulerpartlemn 33995 ballotlem2 34102 reprinrn 34244 reprdifc 34253 cusgr3cyclex 34740 dfon3 35482 brsuccf 35531 brsegle2 35699 bj-restn0b 36564 bj-opelidb1 36626 matunitlindflem2 37084 poimirlem25 37112 ftc1anc 37168 disjlem17 38265 prtlem17 38342 lcvnbtwn3 38494 cvrnbtwn3 38742 islpln5 39002 islvol5 39046 lhpexle3 39479 dibelval3 40614 dihglb2 40809 pm11.6 43823 stoweidlem17 45399 smfsuplem1 46193 |
Copyright terms: Public domain | W3C validator |