| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an21 644 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an32s 652 3anan32 1096 inrab2 4280 reupick 4292 difxp 6137 imadif 6600 respreima 7038 dff1o6 7250 dfoprab2 7447 f11o 7925 xpassen 9035 dfac5lem1 10076 kmlem3 10106 qbtwnre 13159 elioomnf 13405 modfsummod 15760 pcqcl 16827 tosso 18378 subgdmdprd 19966 pjfval2 21618 opsrtoslem1 21962 fvmptnn04if 22736 cmpcov2 23277 tx1cn 23496 tgphaus 24004 isms2 24338 elcncf1di 24788 elii1 24831 isclmp 24997 bddiblnc 25743 dvreslem 25810 dvdsflsumcom 27098 upgr2wlk 29596 upgrtrls 29629 upgristrl 29630 fusgr2wsp2nb 30263 cvnbtwn3 32217 an42ds 32379 an52ds 32380 an62ds 32381 an72ds 32382 an82ds 32383 fdifsupp 32608 ssdifidllem 33427 ssmxidllem 33444 ordtconnlem1 33914 1stmbfm 34251 eulerpartlemn 34372 ballotlem2 34480 reprinrn 34609 reprdifc 34618 cusgr3cyclex 35123 dfon3 35880 brsuccf 35929 brsegle2 36097 bj-restn0b 37079 bj-opelidb1 37141 matunitlindflem2 37611 poimirlem25 37639 ftc1anc 37695 disjlem17 38791 prtlem17 38869 lcvnbtwn3 39021 cvrnbtwn3 39269 islpln5 39529 islvol5 39573 lhpexle3 40006 dibelval3 41141 dihglb2 41336 pm11.6 44381 stoweidlem17 46015 smfsuplem1 46809 |
| Copyright terms: Public domain | W3C validator |