![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 643 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 1 | biancomi 464 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: an32s 651 3anan32 1098 indifdirOLD 4285 inrab2 4307 reupick 4318 difxp 6161 imadif 6630 respreima 7065 dff1o6 7270 dfoprab2 7464 f11o 7930 xpassen 9063 dfac5lem1 10115 kmlem3 10144 qbtwnre 13175 elioomnf 13418 modfsummod 15737 pcqcl 16786 tosso 18369 subgdmdprd 19899 pjfval2 21256 opsrtoslem1 21608 fvmptnn04if 22343 cmpcov2 22886 tx1cn 23105 tgphaus 23613 isms2 23948 elcncf1di 24403 elii1 24443 isclmp 24605 bddiblnc 25351 dvreslem 25418 dvdsflsumcom 26682 upgr2wlk 28915 upgrtrls 28948 upgristrl 28949 fusgr2wsp2nb 29577 cvnbtwn3 31529 ssmxidllem 32578 ordtconnlem1 32893 1stmbfm 33248 eulerpartlemn 33369 ballotlem2 33476 reprinrn 33619 reprdifc 33628 cusgr3cyclex 34116 dfon3 34853 brsuccf 34902 brsegle2 35070 bj-restn0b 35961 bj-opelidb1 36023 matunitlindflem2 36474 poimirlem25 36502 ftc1anc 36558 disjlem17 37658 prtlem17 37735 lcvnbtwn3 37887 cvrnbtwn3 38135 islpln5 38395 islvol5 38439 lhpexle3 38872 dibelval3 40007 dihglb2 40202 pm11.6 43137 stoweidlem17 44720 smfsuplem1 45514 |
Copyright terms: Public domain | W3C validator |