| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an21 644 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an32s 652 3anan32 1096 inrab2 4292 reupick 4304 difxp 6153 imadif 6620 respreima 7056 dff1o6 7268 dfoprab2 7465 f11o 7945 xpassen 9080 dfac5lem1 10137 kmlem3 10167 qbtwnre 13215 elioomnf 13461 modfsummod 15810 pcqcl 16876 tosso 18429 subgdmdprd 20017 pjfval2 21669 opsrtoslem1 22013 fvmptnn04if 22787 cmpcov2 23328 tx1cn 23547 tgphaus 24055 isms2 24389 elcncf1di 24839 elii1 24882 isclmp 25048 bddiblnc 25795 dvreslem 25862 dvdsflsumcom 27150 upgr2wlk 29648 upgrtrls 29681 upgristrl 29682 fusgr2wsp2nb 30315 cvnbtwn3 32269 an42ds 32431 an52ds 32432 an62ds 32433 an72ds 32434 an82ds 32435 fdifsupp 32662 ssdifidllem 33471 ssmxidllem 33488 ordtconnlem1 33955 1stmbfm 34292 eulerpartlemn 34413 ballotlem2 34521 reprinrn 34650 reprdifc 34659 cusgr3cyclex 35158 dfon3 35910 brsuccf 35959 brsegle2 36127 bj-restn0b 37109 bj-opelidb1 37171 matunitlindflem2 37641 poimirlem25 37669 ftc1anc 37725 disjlem17 38817 prtlem17 38894 lcvnbtwn3 39046 cvrnbtwn3 39294 islpln5 39554 islvol5 39598 lhpexle3 40031 dibelval3 41166 dihglb2 41361 pm11.6 44416 stoweidlem17 46046 smfsuplem1 46840 |
| Copyright terms: Public domain | W3C validator |