![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 640 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 1 | biancomi 461 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: an32s 648 3anan32 1095 indifdirOLD 4286 inrab2 4308 reupick 4319 difxp 6164 imadif 6633 respreima 7068 dff1o6 7277 dfoprab2 7471 f11o 7937 xpassen 9070 dfac5lem1 10122 kmlem3 10151 qbtwnre 13184 elioomnf 13427 modfsummod 15746 pcqcl 16795 tosso 18378 subgdmdprd 19947 pjfval2 21485 opsrtoslem1 21837 fvmptnn04if 22573 cmpcov2 23116 tx1cn 23335 tgphaus 23843 isms2 24178 elcncf1di 24637 elii1 24680 isclmp 24846 bddiblnc 25593 dvreslem 25660 dvdsflsumcom 26926 upgr2wlk 29190 upgrtrls 29223 upgristrl 29224 fusgr2wsp2nb 29852 cvnbtwn3 31806 ssmxidllem 32861 ordtconnlem1 33200 1stmbfm 33555 eulerpartlemn 33676 ballotlem2 33783 reprinrn 33926 reprdifc 33935 cusgr3cyclex 34423 dfon3 35166 brsuccf 35215 brsegle2 35383 bj-restn0b 36277 bj-opelidb1 36339 matunitlindflem2 36790 poimirlem25 36818 ftc1anc 36874 disjlem17 37974 prtlem17 38051 lcvnbtwn3 38203 cvrnbtwn3 38451 islpln5 38711 islvol5 38755 lhpexle3 39188 dibelval3 40323 dihglb2 40518 pm11.6 43455 stoweidlem17 45033 smfsuplem1 45827 |
Copyright terms: Public domain | W3C validator |