![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 643 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an32s 651 3anan32 1097 inrab2 4336 reupick 4348 difxp 6195 imadif 6662 respreima 7099 dff1o6 7311 dfoprab2 7508 f11o 7987 xpassen 9132 dfac5lem1 10192 kmlem3 10222 qbtwnre 13261 elioomnf 13504 modfsummod 15842 pcqcl 16903 tosso 18489 subgdmdprd 20078 pjfval2 21752 opsrtoslem1 22102 fvmptnn04if 22876 cmpcov2 23419 tx1cn 23638 tgphaus 24146 isms2 24481 elcncf1di 24940 elii1 24983 isclmp 25149 bddiblnc 25897 dvreslem 25964 dvdsflsumcom 27249 upgr2wlk 29704 upgrtrls 29737 upgristrl 29738 fusgr2wsp2nb 30366 cvnbtwn3 32320 an42ds 32479 an52ds 32480 an62ds 32481 an72ds 32482 an82ds 32483 ssdifidllem 33449 ssmxidllem 33466 ordtconnlem1 33870 1stmbfm 34225 eulerpartlemn 34346 ballotlem2 34453 reprinrn 34595 reprdifc 34604 cusgr3cyclex 35104 dfon3 35856 brsuccf 35905 brsegle2 36073 bj-restn0b 37057 bj-opelidb1 37119 matunitlindflem2 37577 poimirlem25 37605 ftc1anc 37661 disjlem17 38755 prtlem17 38832 lcvnbtwn3 38984 cvrnbtwn3 39232 islpln5 39492 islvol5 39536 lhpexle3 39969 dibelval3 41104 dihglb2 41299 pm11.6 44361 stoweidlem17 45938 smfsuplem1 46732 |
Copyright terms: Public domain | W3C validator |