Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 640 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an32s 648 3anan32 1095 indifdirOLD 4216 inrab2 4238 reupick 4249 difxp 6056 imadif 6502 respreima 6925 dff1o6 7128 dfoprab2 7311 f11o 7763 xpassen 8806 dfac5lem1 9810 kmlem3 9839 qbtwnre 12862 elioomnf 13105 modfsummod 15434 pcqcl 16485 tosso 18052 subgdmdprd 19552 pjfval2 20826 opsrtoslem1 21172 fvmptnn04if 21906 cmpcov2 22449 tx1cn 22668 tgphaus 23176 isms2 23511 elcncf1di 23964 elii1 24004 isclmp 24166 bddiblnc 24911 dvreslem 24978 dvdsflsumcom 26242 upgr2wlk 27938 upgrtrls 27971 upgristrl 27972 fusgr2wsp2nb 28599 cvnbtwn3 30551 ssmxidllem 31543 ordtconnlem1 31776 1stmbfm 32127 eulerpartlemn 32248 ballotlem2 32355 reprinrn 32498 reprdifc 32507 cusgr3cyclex 32998 dfon3 34121 brsuccf 34170 brsegle2 34338 bj-restn0b 35189 bj-opelidb1 35251 matunitlindflem2 35701 poimirlem25 35729 ftc1anc 35785 prtlem17 36817 lcvnbtwn3 36969 cvrnbtwn3 37217 islpln5 37476 islvol5 37520 lhpexle3 37953 dibelval3 39088 dihglb2 39283 pm11.6 41899 stoweidlem17 43448 smfsuplem1 44231 |
Copyright terms: Public domain | W3C validator |