| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an21 644 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an32s 652 3anan32 1096 inrab2 4268 reupick 4280 difxp 6113 imadif 6566 respreima 7000 dff1o6 7212 dfoprab2 7407 f11o 7882 xpassen 8988 dfac5lem1 10017 kmlem3 10047 qbtwnre 13101 elioomnf 13347 modfsummod 15701 pcqcl 16768 tosso 18323 subgdmdprd 19915 pjfval2 21616 opsrtoslem1 21960 fvmptnn04if 22734 cmpcov2 23275 tx1cn 23494 tgphaus 24002 isms2 24336 elcncf1di 24786 elii1 24829 isclmp 24995 bddiblnc 25741 dvreslem 25808 dvdsflsumcom 27096 upgr2wlk 29612 upgrtrls 29645 upgristrl 29646 fusgr2wsp2nb 30278 cvnbtwn3 32232 an42ds 32394 an52ds 32395 an62ds 32396 an72ds 32397 an82ds 32398 fdifsupp 32627 ssdifidllem 33393 ssmxidllem 33410 ordtconnlem1 33891 1stmbfm 34228 eulerpartlemn 34349 ballotlem2 34457 reprinrn 34586 reprdifc 34595 cusgr3cyclex 35109 dfon3 35866 brsuccf 35915 brsegle2 36083 bj-restn0b 37065 bj-opelidb1 37127 matunitlindflem2 37597 poimirlem25 37625 ftc1anc 37681 disjlem17 38777 prtlem17 38855 lcvnbtwn3 39007 cvrnbtwn3 39255 islpln5 39514 islvol5 39558 lhpexle3 39991 dibelval3 41126 dihglb2 41321 pm11.6 44365 stoweidlem17 45998 smfsuplem1 46792 |
| Copyright terms: Public domain | W3C validator |