| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an21 644 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an32s 652 3anan32 1096 an42ds 1491 inrab2 4262 reupick 4274 difxp 6106 imadif 6560 respreima 6994 dff1o6 7204 dfoprab2 7399 f11o 7874 xpassen 8979 dfac5lem1 10009 kmlem3 10039 qbtwnre 13093 elioomnf 13339 modfsummod 15696 pcqcl 16763 tosso 18318 subgdmdprd 19943 pjfval2 21641 opsrtoslem1 21985 fvmptnn04if 22759 cmpcov2 23300 tx1cn 23519 tgphaus 24027 isms2 24360 elcncf1di 24810 elii1 24853 isclmp 25019 bddiblnc 25765 dvreslem 25832 dvdsflsumcom 27120 upgr2wlk 29640 upgrtrls 29673 upgristrl 29674 fusgr2wsp2nb 30306 cvnbtwn3 32260 an52ds 32422 an62ds 32423 an72ds 32424 an82ds 32425 fdifsupp 32658 ssdifidllem 33413 ssmxidllem 33430 ordtconnlem1 33929 1stmbfm 34265 eulerpartlemn 34386 ballotlem2 34494 reprinrn 34623 reprdifc 34632 cusgr3cyclex 35172 dfon3 35926 brsuccf 35975 brsegle2 36143 bj-restn0b 37125 bj-opelidb1 37187 matunitlindflem2 37657 poimirlem25 37685 ftc1anc 37741 disjlem17 38837 prtlem17 38915 lcvnbtwn3 39067 cvrnbtwn3 39315 islpln5 39574 islvol5 39618 lhpexle3 40051 dibelval3 41186 dihglb2 41381 pm11.6 44425 stoweidlem17 46055 smfsuplem1 46849 |
| Copyright terms: Public domain | W3C validator |