| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an21 644 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an32s 652 3anan32 1096 inrab2 4283 reupick 4295 difxp 6140 imadif 6603 respreima 7041 dff1o6 7253 dfoprab2 7450 f11o 7928 xpassen 9040 dfac5lem1 10083 kmlem3 10113 qbtwnre 13166 elioomnf 13412 modfsummod 15767 pcqcl 16834 tosso 18385 subgdmdprd 19973 pjfval2 21625 opsrtoslem1 21969 fvmptnn04if 22743 cmpcov2 23284 tx1cn 23503 tgphaus 24011 isms2 24345 elcncf1di 24795 elii1 24838 isclmp 25004 bddiblnc 25750 dvreslem 25817 dvdsflsumcom 27105 upgr2wlk 29603 upgrtrls 29636 upgristrl 29637 fusgr2wsp2nb 30270 cvnbtwn3 32224 an42ds 32386 an52ds 32387 an62ds 32388 an72ds 32389 an82ds 32390 fdifsupp 32615 ssdifidllem 33434 ssmxidllem 33451 ordtconnlem1 33921 1stmbfm 34258 eulerpartlemn 34379 ballotlem2 34487 reprinrn 34616 reprdifc 34625 cusgr3cyclex 35130 dfon3 35887 brsuccf 35936 brsegle2 36104 bj-restn0b 37086 bj-opelidb1 37148 matunitlindflem2 37618 poimirlem25 37646 ftc1anc 37702 disjlem17 38798 prtlem17 38876 lcvnbtwn3 39028 cvrnbtwn3 39276 islpln5 39536 islvol5 39580 lhpexle3 40013 dibelval3 41148 dihglb2 41343 pm11.6 44388 stoweidlem17 46022 smfsuplem1 46816 |
| Copyright terms: Public domain | W3C validator |