![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 644 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an32s 652 3anan32 1096 inrab2 4322 reupick 4334 difxp 6185 imadif 6651 respreima 7085 dff1o6 7294 dfoprab2 7490 f11o 7969 xpassen 9104 dfac5lem1 10160 kmlem3 10190 qbtwnre 13237 elioomnf 13480 modfsummod 15826 pcqcl 16889 tosso 18476 subgdmdprd 20068 pjfval2 21746 opsrtoslem1 22096 fvmptnn04if 22870 cmpcov2 23413 tx1cn 23632 tgphaus 24140 isms2 24475 elcncf1di 24934 elii1 24977 isclmp 25143 bddiblnc 25891 dvreslem 25958 dvdsflsumcom 27245 upgr2wlk 29700 upgrtrls 29733 upgristrl 29734 fusgr2wsp2nb 30362 cvnbtwn3 32316 an42ds 32478 an52ds 32479 an62ds 32480 an72ds 32481 an82ds 32482 fdifsupp 32699 ssdifidllem 33463 ssmxidllem 33480 ordtconnlem1 33884 1stmbfm 34241 eulerpartlemn 34362 ballotlem2 34469 reprinrn 34611 reprdifc 34620 cusgr3cyclex 35120 dfon3 35873 brsuccf 35922 brsegle2 36090 bj-restn0b 37073 bj-opelidb1 37135 matunitlindflem2 37603 poimirlem25 37631 ftc1anc 37687 disjlem17 38780 prtlem17 38857 lcvnbtwn3 39009 cvrnbtwn3 39257 islpln5 39517 islvol5 39561 lhpexle3 39994 dibelval3 41129 dihglb2 41324 pm11.6 44387 stoweidlem17 45972 smfsuplem1 46766 |
Copyright terms: Public domain | W3C validator |