| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an21 644 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an32s 652 3anan32 1096 inrab2 4276 reupick 4288 difxp 6125 imadif 6584 respreima 7020 dff1o6 7232 dfoprab2 7427 f11o 7905 xpassen 9012 dfac5lem1 10052 kmlem3 10082 qbtwnre 13135 elioomnf 13381 modfsummod 15736 pcqcl 16803 tosso 18354 subgdmdprd 19942 pjfval2 21594 opsrtoslem1 21938 fvmptnn04if 22712 cmpcov2 23253 tx1cn 23472 tgphaus 23980 isms2 24314 elcncf1di 24764 elii1 24807 isclmp 24973 bddiblnc 25719 dvreslem 25786 dvdsflsumcom 27074 upgr2wlk 29570 upgrtrls 29603 upgristrl 29604 fusgr2wsp2nb 30236 cvnbtwn3 32190 an42ds 32352 an52ds 32353 an62ds 32354 an72ds 32355 an82ds 32356 fdifsupp 32581 ssdifidllem 33400 ssmxidllem 33417 ordtconnlem1 33887 1stmbfm 34224 eulerpartlemn 34345 ballotlem2 34453 reprinrn 34582 reprdifc 34591 cusgr3cyclex 35096 dfon3 35853 brsuccf 35902 brsegle2 36070 bj-restn0b 37052 bj-opelidb1 37114 matunitlindflem2 37584 poimirlem25 37612 ftc1anc 37668 disjlem17 38764 prtlem17 38842 lcvnbtwn3 38994 cvrnbtwn3 39242 islpln5 39502 islvol5 39546 lhpexle3 39979 dibelval3 41114 dihglb2 41309 pm11.6 44354 stoweidlem17 45988 smfsuplem1 46782 |
| Copyright terms: Public domain | W3C validator |