| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2anbr 599 rspc4v 3597 funfv 6910 2mpo0 7598 tfrlem7 8305 omword 8488 isinf 9154 fsuppunbi 9279 axdc3lem2 10345 supsrlem 11005 expclzlem 13990 expgt0 14002 expge0 14005 expge1 14006 swrdnd2 14562 resqrex 15157 rplpwr 16469 4sqlem19 16875 gexcl3 19466 thlle 21604 decpmataa0 22653 neindisj 23002 ptcmplem5 23941 tsmsxplem1 24038 tsmsxplem2 24039 elovolmr 25375 itgsubst 25954 logeftb 26490 logbchbase 26679 nosupbnd1lem5 27622 noinfbnd1lem5 27637 legov 28530 unopbd 31959 nmcoplb 31974 nmcfnlb 31998 nmopcoi 32039 an52ds 32395 an62ds 32396 an72ds 32397 an82ds 32398 iocinif 32725 1arithufdlem4 33485 r1plmhm 33543 r1pquslmic 33544 voliune 34202 signstfvneq0 34546 lfuhgr3 35103 f1omptsnlem 37320 unccur 37593 matunitlindflem2 37607 stoweidlem15 46006 hoiqssbllem3 46615 vonioo 46673 vonicc 46676 gboge9 47758 catprs 49006 |
| Copyright terms: Public domain | W3C validator |