| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2anbr 599 rspc4v 3621 funfv 6965 2mpo0 7654 tfrlem7 8395 omword 8580 isinf 9266 isinfOLD 9267 fsuppunbi 9399 axdc3lem2 10463 supsrlem 11123 expclzlem 14099 expgt0 14111 expge0 14114 expge1 14115 swrdnd2 14671 resqrex 15267 rplpwr 16575 4sqlem19 16981 gexcl3 19566 thlle 21655 decpmataa0 22704 neindisj 23053 ptcmplem5 23992 tsmsxplem1 24089 tsmsxplem2 24090 elovolmr 25427 itgsubst 26006 logeftb 26542 logbchbase 26731 nosupbnd1lem5 27674 noinfbnd1lem5 27689 legov 28510 unopbd 31942 nmcoplb 31957 nmcfnlb 31981 nmopcoi 32022 an52ds 32378 an62ds 32379 an72ds 32380 an82ds 32381 iocinif 32704 1arithufdlem4 33508 r1plmhm 33565 r1pquslmic 33566 voliune 34206 signstfvneq0 34550 lfuhgr3 35088 f1omptsnlem 37300 unccur 37573 matunitlindflem2 37587 stoweidlem15 45992 hoiqssbllem3 46601 vonioo 46659 vonicc 46662 gboge9 47726 catprs 48934 |
| Copyright terms: Public domain | W3C validator |