| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2anbr 599 rspc4v 3608 funfv 6948 2mpo0 7638 tfrlem7 8351 omword 8534 isinf 9207 isinfOLD 9208 fsuppunbi 9340 axdc3lem2 10404 supsrlem 11064 expclzlem 14048 expgt0 14060 expge0 14063 expge1 14064 swrdnd2 14620 resqrex 15216 rplpwr 16528 4sqlem19 16934 gexcl3 19517 thlle 21606 decpmataa0 22655 neindisj 23004 ptcmplem5 23943 tsmsxplem1 24040 tsmsxplem2 24041 elovolmr 25377 itgsubst 25956 logeftb 26492 logbchbase 26681 nosupbnd1lem5 27624 noinfbnd1lem5 27639 legov 28512 unopbd 31944 nmcoplb 31959 nmcfnlb 31983 nmopcoi 32024 an52ds 32380 an62ds 32381 an72ds 32382 an82ds 32383 iocinif 32704 1arithufdlem4 33518 r1plmhm 33575 r1pquslmic 33576 voliune 34219 signstfvneq0 34563 lfuhgr3 35107 f1omptsnlem 37324 unccur 37597 matunitlindflem2 37611 stoweidlem15 46013 hoiqssbllem3 46622 vonioo 46680 vonicc 46683 gboge9 47765 catprs 49000 |
| Copyright terms: Public domain | W3C validator |