| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2anbr 599 rspc4v 3605 funfv 6930 2mpo0 7618 tfrlem7 8328 omword 8511 isinf 9183 isinfOLD 9184 fsuppunbi 9316 axdc3lem2 10380 supsrlem 11040 expclzlem 14024 expgt0 14036 expge0 14039 expge1 14040 swrdnd2 14596 resqrex 15192 rplpwr 16504 4sqlem19 16910 gexcl3 19501 thlle 21639 decpmataa0 22688 neindisj 23037 ptcmplem5 23976 tsmsxplem1 24073 tsmsxplem2 24074 elovolmr 25410 itgsubst 25989 logeftb 26525 logbchbase 26714 nosupbnd1lem5 27657 noinfbnd1lem5 27672 legov 28565 unopbd 31994 nmcoplb 32009 nmcfnlb 32033 nmopcoi 32074 an52ds 32430 an62ds 32431 an72ds 32432 an82ds 32433 iocinif 32754 1arithufdlem4 33511 r1plmhm 33568 r1pquslmic 33569 voliune 34212 signstfvneq0 34556 lfuhgr3 35100 f1omptsnlem 37317 unccur 37590 matunitlindflem2 37604 stoweidlem15 46006 hoiqssbllem3 46615 vonioo 46673 vonicc 46676 gboge9 47758 catprs 48993 |
| Copyright terms: Public domain | W3C validator |