![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: syl2anbr 599 rspc4v 3641 funfv 6995 2mpo0 7681 tfrlem7 8421 omword 8606 isinf 9293 isinfOLD 9294 fsuppunbi 9426 axdc3lem2 10488 supsrlem 11148 expclzlem 14120 expgt0 14132 expge0 14135 expge1 14136 swrdnd2 14689 resqrex 15285 rplpwr 16591 4sqlem19 16996 gexcl3 19619 thlle 21733 thlleOLD 21734 decpmataa0 22789 neindisj 23140 ptcmplem5 24079 tsmsxplem1 24176 tsmsxplem2 24177 elovolmr 25524 itgsubst 26104 logeftb 26639 logbchbase 26828 nosupbnd1lem5 27771 noinfbnd1lem5 27786 legov 28607 unopbd 32043 nmcoplb 32058 nmcfnlb 32082 nmopcoi 32123 an52ds 32479 an62ds 32480 an72ds 32481 an82ds 32482 iocinif 32789 1arithufdlem4 33554 r1plmhm 33609 r1pquslmic 33610 voliune 34209 signstfvneq0 34565 lfuhgr3 35103 f1omptsnlem 37318 unccur 37589 matunitlindflem2 37603 stoweidlem15 45970 hoiqssbllem3 46579 vonioo 46637 vonicc 46640 gboge9 47688 catprs 48799 |
Copyright terms: Public domain | W3C validator |