Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: syl2anbr 598 funfv 6837 2mpo0 7496 tfrlem7 8185 omword 8363 isinf 8965 fsuppunbi 9079 axdc3lem2 10138 supsrlem 10798 expclzlem 13734 expgt0 13744 expge0 13747 expge1 13748 swrdnd2 14296 resqrex 14890 rplpwr 16195 4sqlem19 16592 gexcl3 19107 thlle 20814 decpmataa0 21825 neindisj 22176 ptcmplem5 23115 tsmsxplem1 23212 tsmsxplem2 23213 elovolmr 24545 itgsubst 25118 logeftb 25644 logbchbase 25826 legov 26850 unopbd 30278 nmcoplb 30293 nmcfnlb 30317 nmopcoi 30358 iocinif 31004 voliune 32097 signstfvneq0 32451 lfuhgr3 32981 nosupbnd1lem5 33842 noinfbnd1lem5 33857 f1omptsnlem 35434 unccur 35687 matunitlindflem2 35701 stoweidlem15 43446 hoiqssbllem3 44052 vonioo 44110 vonicc 44113 gboge9 45104 catprs 46180 |
Copyright terms: Public domain | W3C validator |