| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2anbr 599 rspc4v 3592 funfv 6909 2mpo0 7595 tfrlem7 8302 omword 8485 isinf 9149 fsuppunbi 9273 axdc3lem2 10342 supsrlem 11002 expclzlem 13990 expgt0 14002 expge0 14005 expge1 14006 swrdnd2 14563 resqrex 15157 rplpwr 16469 4sqlem19 16875 gexcl3 19499 thlle 21634 decpmataa0 22683 neindisj 23032 ptcmplem5 23971 tsmsxplem1 24068 tsmsxplem2 24069 elovolmr 25404 itgsubst 25983 logeftb 26519 logbchbase 26708 nosupbnd1lem5 27651 noinfbnd1lem5 27666 legov 28563 unopbd 31995 nmcoplb 32010 nmcfnlb 32034 nmopcoi 32075 an52ds 32430 an62ds 32431 an72ds 32432 an82ds 32433 iocinif 32764 1arithufdlem4 33512 r1plmhm 33570 r1pquslmic 33571 voliune 34242 signstfvneq0 34585 lfuhgr3 35164 f1omptsnlem 37380 unccur 37642 matunitlindflem2 37656 stoweidlem15 46112 hoiqssbllem3 46721 vonioo 46779 vonicc 46782 gboge9 47863 catprs 49111 |
| Copyright terms: Public domain | W3C validator |