MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanbr Structured version   Visualization version   GIF version

Theorem sylanbr 580
Description: A syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
sylanbr.1 (𝜓𝜑)
sylanbr.2 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
sylanbr ((𝜑𝜒) → 𝜃)

Proof of Theorem sylanbr
StepHypRef Expression
1 sylanbr.1 . . 3 (𝜓𝜑)
21biimpri 227 . 2 (𝜑𝜓)
3 sylanbr.2 . 2 ((𝜓𝜒) → 𝜃)
42, 3sylan 578 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  syl2anbr  597  rspc4v  3629  funfv  6977  2mpo0  7657  tfrlem7  8385  omword  8572  isinf  9262  isinfOLD  9263  fsuppunbi  9386  axdc3lem2  10448  supsrlem  11108  expclzlem  14053  expgt0  14065  expge0  14068  expge1  14069  swrdnd2  14609  resqrex  15201  rplpwr  16503  4sqlem19  16900  gexcl3  19496  thlle  21470  thlleOLD  21471  decpmataa0  22490  neindisj  22841  ptcmplem5  23780  tsmsxplem1  23877  tsmsxplem2  23878  elovolmr  25225  itgsubst  25801  logeftb  26328  logbchbase  26512  nosupbnd1lem5  27451  noinfbnd1lem5  27466  legov  28103  unopbd  31535  nmcoplb  31550  nmcfnlb  31574  nmopcoi  31615  iocinif  32259  r1plmhm  32955  r1pquslmic  32956  voliune  33525  signstfvneq0  33881  lfuhgr3  34408  f1omptsnlem  36520  unccur  36774  matunitlindflem2  36788  stoweidlem15  45029  hoiqssbllem3  45638  vonioo  45696  vonicc  45699  gboge9  46730  catprs  47718
  Copyright terms: Public domain W3C validator