![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: syl2anbr 598 rspc4v 3655 funfv 7009 2mpo0 7699 tfrlem7 8439 omword 8626 isinf 9323 isinfOLD 9324 fsuppunbi 9458 axdc3lem2 10520 supsrlem 11180 expclzlem 14134 expgt0 14146 expge0 14149 expge1 14150 swrdnd2 14703 resqrex 15299 rplpwr 16605 4sqlem19 17010 gexcl3 19629 thlle 21739 thlleOLD 21740 decpmataa0 22795 neindisj 23146 ptcmplem5 24085 tsmsxplem1 24182 tsmsxplem2 24183 elovolmr 25530 itgsubst 26110 logeftb 26643 logbchbase 26832 nosupbnd1lem5 27775 noinfbnd1lem5 27790 legov 28611 unopbd 32047 nmcoplb 32062 nmcfnlb 32086 nmopcoi 32127 an52ds 32480 an62ds 32481 an72ds 32482 an82ds 32483 iocinif 32786 1arithufdlem4 33540 r1plmhm 33595 r1pquslmic 33596 voliune 34193 signstfvneq0 34549 lfuhgr3 35087 f1omptsnlem 37302 unccur 37563 matunitlindflem2 37577 stoweidlem15 45936 hoiqssbllem3 46545 vonioo 46603 vonicc 46606 gboge9 47638 catprs 48678 |
Copyright terms: Public domain | W3C validator |