Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 227 | . 2 ⊢ (𝜑 → 𝜓) |
3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: syl2anbr 599 funfv 6855 2mpo0 7518 tfrlem7 8214 omword 8401 isinf 9036 fsuppunbi 9149 axdc3lem2 10207 supsrlem 10867 expclzlem 13806 expgt0 13816 expge0 13819 expge1 13820 swrdnd2 14368 resqrex 14962 rplpwr 16267 4sqlem19 16664 gexcl3 19192 thlle 20903 thlleOLD 20904 decpmataa0 21917 neindisj 22268 ptcmplem5 23207 tsmsxplem1 23304 tsmsxplem2 23305 elovolmr 24640 itgsubst 25213 logeftb 25739 logbchbase 25921 legov 26946 unopbd 30377 nmcoplb 30392 nmcfnlb 30416 nmopcoi 30457 iocinif 31102 voliune 32197 signstfvneq0 32551 lfuhgr3 33081 nosupbnd1lem5 33915 noinfbnd1lem5 33930 f1omptsnlem 35507 unccur 35760 matunitlindflem2 35774 stoweidlem15 43556 hoiqssbllem3 44162 vonioo 44220 vonicc 44223 gboge9 45216 catprs 46292 |
Copyright terms: Public domain | W3C validator |