| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylanbr.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylanbr | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylanbr.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2anbr 599 rspc4v 3611 funfv 6951 2mpo0 7641 tfrlem7 8354 omword 8537 isinf 9214 isinfOLD 9215 fsuppunbi 9347 axdc3lem2 10411 supsrlem 11071 expclzlem 14055 expgt0 14067 expge0 14070 expge1 14071 swrdnd2 14627 resqrex 15223 rplpwr 16535 4sqlem19 16941 gexcl3 19524 thlle 21613 decpmataa0 22662 neindisj 23011 ptcmplem5 23950 tsmsxplem1 24047 tsmsxplem2 24048 elovolmr 25384 itgsubst 25963 logeftb 26499 logbchbase 26688 nosupbnd1lem5 27631 noinfbnd1lem5 27646 legov 28519 unopbd 31951 nmcoplb 31966 nmcfnlb 31990 nmopcoi 32031 an52ds 32387 an62ds 32388 an72ds 32389 an82ds 32390 iocinif 32711 1arithufdlem4 33525 r1plmhm 33582 r1pquslmic 33583 voliune 34226 signstfvneq0 34570 lfuhgr3 35114 f1omptsnlem 37331 unccur 37604 matunitlindflem2 37618 stoweidlem15 46020 hoiqssbllem3 46629 vonioo 46687 vonicc 46690 gboge9 47769 catprs 49004 |
| Copyright terms: Public domain | W3C validator |