Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  an62ds Structured version   Visualization version   GIF version

Theorem an62ds 32331
Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
an62ds.1 ((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁)
Assertion
Ref Expression
an62ds ((((((𝜑𝜂) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜁)

Proof of Theorem an62ds
StepHypRef Expression
1 an32 644 . . . . 5 (((𝜑𝜓) ∧ 𝜂) ↔ ((𝜑𝜂) ∧ 𝜓))
21anbi1i 622 . . . 4 ((((𝜑𝜓) ∧ 𝜂) ∧ 𝜃) ↔ (((𝜑𝜂) ∧ 𝜓) ∧ 𝜃))
32anbi1i 622 . . 3 (((((𝜑𝜓) ∧ 𝜂) ∧ 𝜃) ∧ 𝜏) ↔ ((((𝜑𝜂) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏))
4 an62ds.1 . . . 4 ((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁)
54an52ds 32330 . . 3 ((((((𝜑𝜓) ∧ 𝜂) ∧ 𝜃) ∧ 𝜏) ∧ 𝜒) → 𝜁)
63, 5sylanbr 580 . 2 ((((((𝜑𝜂) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜒) → 𝜁)
76an52ds 32330 1 ((((((𝜑𝜂) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  an72ds  32332  dfufd2lem  33364
  Copyright terms: Public domain W3C validator