Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
⊢ (𝑅 ∈ UFD → 𝑅 ∈ UFD) |
2 | 1 | ufdcringd 33356 |
. . . . 5
⊢ (𝑅 ∈ UFD → 𝑅 ∈ CRing) |
3 | 2 | adantr 479 |
. . . 4
⊢ ((𝑅 ∈ UFD ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ CRing) |
4 | | simpr 483 |
. . . 4
⊢ ((𝑅 ∈ UFD ∧ ¬ 𝑅 ∈ NzRing) → ¬
𝑅 ∈
NzRing) |
5 | 3, 4 | eldifd 3955 |
. . 3
⊢ ((𝑅 ∈ UFD ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ (CRing ∖
NzRing)) |
6 | | simpr 483 |
. . . . 5
⊢ ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ NzRing) |
7 | | simpl 481 |
. . . . 5
⊢ ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ UFD) |
8 | 6, 7 | ufdidom 33355 |
. . . 4
⊢ ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ IDomn) |
9 | | dfufd2.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
10 | | dfufd2.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
11 | | dfufd2.u |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) |
12 | | dfufd2.p |
. . . . . . 7
⊢ 𝑃 = (RPrime‘𝑅) |
13 | | dfufd2.m |
. . . . . . 7
⊢ 𝑀 = (mulGrp‘𝑅) |
14 | | simpl 481 |
. . . . . . 7
⊢ ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) → 𝑅 ∈ UFD) |
15 | | simpr 483 |
. . . . . . . . 9
⊢ ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) → 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) |
16 | 15 | eldifad 3956 |
. . . . . . . 8
⊢ ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) → 𝑥 ∈ (𝐵 ∖ 𝑈)) |
17 | 16 | eldifad 3956 |
. . . . . . 7
⊢ ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) → 𝑥 ∈ 𝐵) |
18 | 16 | eldifbd 3957 |
. . . . . . 7
⊢ ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) → ¬ 𝑥 ∈ 𝑈) |
19 | | eldifsni 4795 |
. . . . . . . 8
⊢ (𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 }) → 𝑥 ≠ 0 ) |
20 | 19 | adantl 480 |
. . . . . . 7
⊢ ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) → 𝑥 ≠ 0 ) |
21 | 9, 10, 11, 12, 13, 14, 17, 18, 20 | 1arithufd 33363 |
. . . . . 6
⊢ ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) → ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) |
22 | 21 | ralrimiva 3135 |
. . . . 5
⊢ (𝑅 ∈ UFD → ∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) |
23 | 22 | adantr 479 |
. . . 4
⊢ ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) →
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) |
24 | 8, 23 | jca 510 |
. . 3
⊢ ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → (𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) |
25 | | exmidd 893 |
. . . 4
⊢ (𝑅 ∈ UFD → (𝑅 ∈ NzRing ∨ ¬ 𝑅 ∈
NzRing)) |
26 | 25 | orcomd 869 |
. . 3
⊢ (𝑅 ∈ UFD → (¬ 𝑅 ∈ NzRing ∨ 𝑅 ∈
NzRing)) |
27 | 5, 24, 26 | orim12da 32336 |
. 2
⊢ (𝑅 ∈ UFD → (𝑅 ∈ (CRing ∖ NzRing)
∨ (𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))) |
28 | | eldif 3954 |
. . . 4
⊢ (𝑅 ∈ (CRing ∖ NzRing)
↔ (𝑅 ∈ CRing
∧ ¬ 𝑅 ∈
NzRing)) |
29 | | eqid 2725 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
30 | | crngring 20197 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
31 | 30 | adantr 479 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ Ring) |
32 | | 0ringnnzr 20474 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) |
33 | 32 | biimpar 476 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) →
(♯‘(Base‘𝑅)) = 1) |
34 | 30, 33 | sylan 578 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ ¬ 𝑅 ∈ NzRing) →
(♯‘(Base‘𝑅)) = 1) |
35 | 29, 31, 34 | 0ringufd 33357 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ UFD) |
36 | 28, 35 | sylbi 216 |
. . 3
⊢ (𝑅 ∈ (CRing ∖ NzRing)
→ 𝑅 ∈
UFD) |
37 | | id 22 |
. . . . . . 7
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ IDomn) |
38 | 37 | idomdomd 21272 |
. . . . . 6
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
39 | | domnnzr 21259 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ NzRing) |
41 | 40 | adantr 479 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ NzRing) |
42 | | simpl 481 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn) |
43 | 37 | idomringd 21274 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Ring) |
44 | 43 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring) |
45 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) |
46 | 45 | eldifad 3956 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅)) |
47 | | prmidlidl 33256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅)) |
48 | 44, 46, 47 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅)) |
49 | | eqid 2725 |
. . . . . . . . . . . . . . 15
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
50 | 9, 49 | lidlss 21120 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ 𝐵) |
51 | 48, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ⊆ 𝐵) |
52 | 51 | sselda 3976 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → 𝑦 ∈ 𝐵) |
53 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) |
54 | | simplr 767 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑖) |
55 | 44 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ∈ 𝑈) → 𝑅 ∈ Ring) |
56 | 48 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ∈ 𝑈) → 𝑖 ∈ (LIdeal‘𝑅)) |
57 | 9, 11, 53, 54, 55, 56 | lidlunitel 33235 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ∈ 𝑈) → 𝑖 = 𝐵) |
58 | | eqid 2725 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑅) = (.r‘𝑅) |
59 | 9, 58 | prmidlnr 33251 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ≠ 𝐵) |
60 | 44, 46, 59 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ≠ 𝐵) |
61 | 60 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ∈ 𝑈) → 𝑖 ≠ 𝐵) |
62 | 61 | neneqd 2934 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ∈ 𝑈) → ¬ 𝑖 = 𝐵) |
63 | 57, 62 | pm2.65da 815 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → ¬ 𝑦 ∈ 𝑈) |
64 | 52, 63 | eldifd 3955 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → 𝑦 ∈ (𝐵 ∖ 𝑈)) |
65 | | simpllr 774 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → 𝑦 ≠ 0 ) |
66 | 64, 65 | eldifsnd 32393 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → 𝑦 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })) |
67 | | eqeq1 2729 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑦 = (𝑀 Σg 𝑓))) |
68 | 67 | rexbidv 3168 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓))) |
69 | 68 | adantl 480 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑥 = 𝑦) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓))) |
70 | 66, 69 | rspcdv 3598 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → (∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓))) |
71 | | simp-5l 783 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn) |
72 | 46 | ad3antrrr 728 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑖 ∈ (PrmIdeal‘𝑅)) |
73 | | simplr 767 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑓 ∈ Word 𝑃) |
74 | | simpr 483 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 = (𝑀 Σg 𝑓)) |
75 | | simpllr 774 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 ∈ 𝑖) |
76 | 74, 75 | eqeltrrd 2826 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ∈ 𝑖) |
77 | 65 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 ≠ 0 ) |
78 | 74, 77 | eqnetrrd 2998 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ≠ 0 ) |
79 | 9, 10, 11, 12, 13, 71, 72, 73, 76, 78 | dfufd2lem 33364 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑖 ∩ 𝑃) ≠ ∅) |
80 | 79 | rexlimdva2 3146 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) → (𝑖 ∩ 𝑃) ≠ ∅)) |
81 | 70, 80 | syld 47 |
. . . . . . . 8
⊢ ((((𝑅 ∈ IDomn ∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) → (∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → (𝑖 ∩ 𝑃) ≠ ∅)) |
82 | 81 | imp 405 |
. . . . . . 7
⊢
(((((𝑅 ∈ IDomn
∧ 𝑦 ≠ 0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ ∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → (𝑖 ∩ 𝑃) ≠ ∅) |
83 | 82 | an52ds 32330 |
. . . . . 6
⊢
(((((𝑅 ∈ IDomn
∧ ∀𝑥 ∈
((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦 ∈ 𝑖) ∧ 𝑦 ≠ 0 ) → (𝑖 ∩ 𝑃) ≠ ∅) |
84 | 43 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring) |
85 | | simpr 483 |
. . . . . . . . 9
⊢ (((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) |
86 | 85 | eldifad 3956 |
. . . . . . . 8
⊢ (((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅)) |
87 | 84, 86, 47 | syl2anc 582 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅)) |
88 | | eldifsni 4795 |
. . . . . . . 8
⊢ (𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}) → 𝑖 ≠ { 0 }) |
89 | 88 | adantl 480 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ≠ { 0 }) |
90 | 49, 10 | lidlnz 21149 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖 ≠ { 0 }) → ∃𝑦 ∈ 𝑖 𝑦 ≠ 0 ) |
91 | 84, 87, 89, 90 | syl3anc 1368 |
. . . . . 6
⊢ (((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∃𝑦 ∈ 𝑖 𝑦 ≠ 0 ) |
92 | 83, 91 | r19.29a 3151 |
. . . . 5
⊢ (((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖 ∩ 𝑃) ≠ ∅) |
93 | 92 | ralrimiva 3135 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅) |
94 | | eqid 2725 |
. . . . . 6
⊢
(PrmIdeal‘𝑅) =
(PrmIdeal‘𝑅) |
95 | 94, 12, 10 | isufd2 33353 |
. . . . 5
⊢ (𝑅 ∈ NzRing → (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧
∀𝑖 ∈
((PrmIdeal‘𝑅) ∖
{{ 0
}})(𝑖 ∩ 𝑃) ≠
∅))) |
96 | 95 | biimpar 476 |
. . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑅 ∈ IDomn ∧
∀𝑖 ∈
((PrmIdeal‘𝑅) ∖
{{ 0
}})(𝑖 ∩ 𝑃) ≠ ∅)) → 𝑅 ∈ UFD) |
97 | 41, 42, 93, 96 | syl12anc 835 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ UFD) |
98 | 36, 97 | jaoi 855 |
. 2
⊢ ((𝑅 ∈ (CRing ∖ NzRing)
∨ (𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) → 𝑅 ∈ UFD) |
99 | 27, 98 | impbii 208 |
1
⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ (CRing ∖ NzRing)
∨ (𝑅 ∈ IDomn ∧
∀𝑥 ∈ ((𝐵 ∖ 𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))) |