Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2 Structured version   Visualization version   GIF version

Theorem dfufd2 33513
Description: Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
dfufd2 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Distinct variable groups:   0 ,𝑓,𝑥   𝐵,𝑓,𝑥   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓,𝑥   𝑈,𝑓,𝑥

Proof of Theorem dfufd2
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑅 ∈ UFD → 𝑅 ∈ UFD)
21ufdidom 33505 . . 3 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
3 dfufd2.b . . . . 5 𝐵 = (Base‘𝑅)
4 dfufd2.0 . . . . 5 0 = (0g𝑅)
5 dfufd2.u . . . . 5 𝑈 = (Unit‘𝑅)
6 dfufd2.p . . . . 5 𝑃 = (RPrime‘𝑅)
7 dfufd2.m . . . . 5 𝑀 = (mulGrp‘𝑅)
8 simpl 482 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑅 ∈ UFD)
9 simpr 484 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ ((𝐵𝑈) ∖ { 0 }))
109eldifad 3914 . . . . . 6 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ (𝐵𝑈))
1110eldifad 3914 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥𝐵)
1210eldifbd 3915 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ¬ 𝑥𝑈)
13 eldifsni 4742 . . . . . 6 (𝑥 ∈ ((𝐵𝑈) ∖ { 0 }) → 𝑥0 )
1413adantl 481 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥0 )
153, 4, 5, 6, 7, 8, 11, 12, 141arithufd 33511 . . . 4 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
1615ralrimiva 3124 . . 3 (𝑅 ∈ UFD → ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
172, 16jca 511 . 2 (𝑅 ∈ UFD → (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
18 simpl 482 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
19 id 22 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
2019idomringd 20644 . . . . . . . . . . . . . . 15 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
2120ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
2322eldifad 3914 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
24 prmidlidl 33407 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
26 eqid 2731 . . . . . . . . . . . . . 14 (LIdeal‘𝑅) = (LIdeal‘𝑅)
273, 26lidlss 21150 . . . . . . . . . . . . 13 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
2825, 27syl 17 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
2928sselda 3934 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦𝐵)
30 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑈)
31 simplr 768 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑖)
3221ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
3325ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 ∈ (LIdeal‘𝑅))
343, 5, 30, 31, 32, 33lidlunitel 33386 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 = 𝐵)
35 eqid 2731 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
363, 35prmidlnr 33402 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖𝐵)
3721, 23, 36syl2anc 584 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
3837ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖𝐵)
3938neneqd 2933 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → ¬ 𝑖 = 𝐵)
4034, 39pm2.65da 816 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → ¬ 𝑦𝑈)
4129, 40eldifd 3913 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ (𝐵𝑈))
42 simpllr 775 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦0 )
4341, 42eldifsnd 4739 . . . . . . . . 9 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ ((𝐵𝑈) ∖ { 0 }))
44 eqeq1 2735 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑦 = (𝑀 Σg 𝑓)))
4544rexbidv 3156 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4645adantl 481 . . . . . . . . 9 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑥 = 𝑦) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4743, 46rspcdv 3569 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
48 simp-5l 784 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
4923ad3antrrr 730 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑖 ∈ (PrmIdeal‘𝑅))
50 simplr 768 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑓 ∈ Word 𝑃)
51 simpr 484 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 = (𝑀 Σg 𝑓))
52 simpllr 775 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦𝑖)
5351, 52eqeltrrd 2832 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ∈ 𝑖)
5442ad2antrr 726 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦0 )
5551, 54eqnetrrd 2996 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ≠ 0 )
563, 4, 5, 6, 7, 48, 49, 50, 53, 55dfufd2lem 33512 . . . . . . . . 9 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
5756rexlimdva2 3135 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5847, 57syld 47 . . . . . . 7 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5958imp 406 . . . . . 6 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
6059an52ds 32428 . . . . 5 (((((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦0 ) → (𝑖𝑃) ≠ ∅)
6120ad2antrr 726 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
62 simpr 484 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6362eldifad 3914 . . . . . . 7 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
6461, 63, 24syl2anc 584 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
65 eldifsni 4742 . . . . . . 7 (𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}) → 𝑖 ≠ { 0 })
6665adantl 481 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ≠ { 0 })
6726, 4lidlnz 21180 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖 ≠ { 0 }) → ∃𝑦𝑖 𝑦0 )
6861, 64, 66, 67syl3anc 1373 . . . . 5 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∃𝑦𝑖 𝑦0 )
6960, 68r19.29a 3140 . . . 4 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
7069ralrimiva 3124 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅)
71 eqid 2731 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
7271, 6, 4isufd 33503 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅))
7318, 70, 72sylanbrc 583 . 2 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ UFD)
7417, 73impbii 209 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3899  cin 3901  wss 3902  c0 4283  {csn 4576  cfv 6481  (class class class)co 7346  Word cword 14420  Basecbs 17120  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  mulGrpcmgp 20059  Ringcrg 20152  Unitcui 20274  RPrimecrpm 20351  IDomncidom 20609  LIdealclidl 21144  PrmIdealcprmidl 33398  UFDcufd 33501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-dju 9794  df-card 9832  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-rprm 20352  df-nzr 20429  df-subrg 20486  df-domn 20611  df-idom 20612  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-sra 21108  df-rgmod 21109  df-lidl 21146  df-rsp 21147  df-prmidl 33399  df-ufd 33502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator