Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2 Structured version   Visualization version   GIF version

Theorem dfufd2 33365
Description: Alternative definition of unique factorization domain (UFD). This is often the textbook definition. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
dfufd2 (𝑅 ∈ UFD ↔ (𝑅 ∈ (CRing ∖ NzRing) ∨ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))))
Distinct variable groups:   0 ,𝑓,𝑥   𝐵,𝑓,𝑥   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓,𝑥   𝑈,𝑓,𝑥

Proof of Theorem dfufd2
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑅 ∈ UFD → 𝑅 ∈ UFD)
21ufdcringd 33356 . . . . 5 (𝑅 ∈ UFD → 𝑅 ∈ CRing)
32adantr 479 . . . 4 ((𝑅 ∈ UFD ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ CRing)
4 simpr 483 . . . 4 ((𝑅 ∈ UFD ∧ ¬ 𝑅 ∈ NzRing) → ¬ 𝑅 ∈ NzRing)
53, 4eldifd 3955 . . 3 ((𝑅 ∈ UFD ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ (CRing ∖ NzRing))
6 simpr 483 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ NzRing)
7 simpl 481 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ UFD)
86, 7ufdidom 33355 . . . 4 ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → 𝑅 ∈ IDomn)
9 dfufd2.b . . . . . . 7 𝐵 = (Base‘𝑅)
10 dfufd2.0 . . . . . . 7 0 = (0g𝑅)
11 dfufd2.u . . . . . . 7 𝑈 = (Unit‘𝑅)
12 dfufd2.p . . . . . . 7 𝑃 = (RPrime‘𝑅)
13 dfufd2.m . . . . . . 7 𝑀 = (mulGrp‘𝑅)
14 simpl 481 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑅 ∈ UFD)
15 simpr 483 . . . . . . . . 9 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ ((𝐵𝑈) ∖ { 0 }))
1615eldifad 3956 . . . . . . . 8 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ (𝐵𝑈))
1716eldifad 3956 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥𝐵)
1816eldifbd 3957 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ¬ 𝑥𝑈)
19 eldifsni 4795 . . . . . . . 8 (𝑥 ∈ ((𝐵𝑈) ∖ { 0 }) → 𝑥0 )
2019adantl 480 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥0 )
219, 10, 11, 12, 13, 14, 17, 18, 201arithufd 33363 . . . . . 6 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
2221ralrimiva 3135 . . . . 5 (𝑅 ∈ UFD → ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
2322adantr 479 . . . 4 ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
248, 23jca 510 . . 3 ((𝑅 ∈ UFD ∧ 𝑅 ∈ NzRing) → (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
25 exmidd 893 . . . 4 (𝑅 ∈ UFD → (𝑅 ∈ NzRing ∨ ¬ 𝑅 ∈ NzRing))
2625orcomd 869 . . 3 (𝑅 ∈ UFD → (¬ 𝑅 ∈ NzRing ∨ 𝑅 ∈ NzRing))
275, 24, 26orim12da 32336 . 2 (𝑅 ∈ UFD → (𝑅 ∈ (CRing ∖ NzRing) ∨ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))))
28 eldif 3954 . . . 4 (𝑅 ∈ (CRing ∖ NzRing) ↔ (𝑅 ∈ CRing ∧ ¬ 𝑅 ∈ NzRing))
29 eqid 2725 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
30 crngring 20197 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3130adantr 479 . . . . 5 ((𝑅 ∈ CRing ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ Ring)
32 0ringnnzr 20474 . . . . . . 7 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
3332biimpar 476 . . . . . 6 ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
3430, 33sylan 578 . . . . 5 ((𝑅 ∈ CRing ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
3529, 31, 340ringufd 33357 . . . 4 ((𝑅 ∈ CRing ∧ ¬ 𝑅 ∈ NzRing) → 𝑅 ∈ UFD)
3628, 35sylbi 216 . . 3 (𝑅 ∈ (CRing ∖ NzRing) → 𝑅 ∈ UFD)
37 id 22 . . . . . . 7 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
3837idomdomd 21272 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
39 domnnzr 21259 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
4038, 39syl 17 . . . . 5 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
4140adantr 479 . . . 4 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ NzRing)
42 simpl 481 . . . 4 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
4337idomringd 21274 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
4443ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
45 simpr 483 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
4645eldifad 3956 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
47 prmidlidl 33256 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
4844, 46, 47syl2anc 582 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
49 eqid 2725 . . . . . . . . . . . . . . 15 (LIdeal‘𝑅) = (LIdeal‘𝑅)
509, 49lidlss 21120 . . . . . . . . . . . . . 14 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
5148, 50syl 17 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
5251sselda 3976 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦𝐵)
53 simpr 483 . . . . . . . . . . . . . 14 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑈)
54 simplr 767 . . . . . . . . . . . . . 14 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑖)
5544ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
5648ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 ∈ (LIdeal‘𝑅))
579, 11, 53, 54, 55, 56lidlunitel 33235 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 = 𝐵)
58 eqid 2725 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
599, 58prmidlnr 33251 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖𝐵)
6044, 46, 59syl2anc 582 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
6160ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖𝐵)
6261neneqd 2934 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → ¬ 𝑖 = 𝐵)
6357, 62pm2.65da 815 . . . . . . . . . . . 12 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → ¬ 𝑦𝑈)
6452, 63eldifd 3955 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ (𝐵𝑈))
65 simpllr 774 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦0 )
6664, 65eldifsnd 32393 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ ((𝐵𝑈) ∖ { 0 }))
67 eqeq1 2729 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑦 = (𝑀 Σg 𝑓)))
6867rexbidv 3168 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
6968adantl 480 . . . . . . . . . 10 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑥 = 𝑦) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
7066, 69rspcdv 3598 . . . . . . . . 9 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
71 simp-5l 783 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
7246ad3antrrr 728 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑖 ∈ (PrmIdeal‘𝑅))
73 simplr 767 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑓 ∈ Word 𝑃)
74 simpr 483 . . . . . . . . . . . 12 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 = (𝑀 Σg 𝑓))
75 simpllr 774 . . . . . . . . . . . 12 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦𝑖)
7674, 75eqeltrrd 2826 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ∈ 𝑖)
7765ad2antrr 724 . . . . . . . . . . . 12 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦0 )
7874, 77eqnetrrd 2998 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ≠ 0 )
799, 10, 11, 12, 13, 71, 72, 73, 76, 78dfufd2lem 33364 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
8079rexlimdva2 3146 . . . . . . . . 9 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
8170, 80syld 47 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
8281imp 405 . . . . . . 7 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
8382an52ds 32330 . . . . . 6 (((((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦0 ) → (𝑖𝑃) ≠ ∅)
8443ad2antrr 724 . . . . . . 7 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
85 simpr 483 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
8685eldifad 3956 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
8784, 86, 47syl2anc 582 . . . . . . 7 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
88 eldifsni 4795 . . . . . . . 8 (𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}) → 𝑖 ≠ { 0 })
8988adantl 480 . . . . . . 7 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ≠ { 0 })
9049, 10lidlnz 21149 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖 ≠ { 0 }) → ∃𝑦𝑖 𝑦0 )
9184, 87, 89, 90syl3anc 1368 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∃𝑦𝑖 𝑦0 )
9283, 91r19.29a 3151 . . . . 5 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
9392ralrimiva 3135 . . . 4 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅)
94 eqid 2725 . . . . . 6 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
9594, 12, 10isufd2 33353 . . . . 5 (𝑅 ∈ NzRing → (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅)))
9695biimpar 476 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅)) → 𝑅 ∈ UFD)
9741, 42, 93, 96syl12anc 835 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ UFD)
9836, 97jaoi 855 . 2 ((𝑅 ∈ (CRing ∖ NzRing) ∨ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))) → 𝑅 ∈ UFD)
9927, 98impbii 208 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ (CRing ∖ NzRing) ∨ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  cdif 3941  cin 3943  wss 3944  c0 4322  {csn 4630  cfv 6549  (class class class)co 7419  1c1 11141  chash 14325  Word cword 14500  Basecbs 17183  .rcmulr 17237  0gc0g 17424   Σg cgsu 17425  mulGrpcmgp 20086  Ringcrg 20185  CRingccrg 20186  Unitcui 20306  RPrimecrpm 20383  NzRingcnzr 20463  LIdealclidl 21114  Domncdomn 21244  IDomncidom 21245  PrmIdealcprmidl 33247  UFDcufd 33350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-ac2 10488  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-rpss 7729  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-dju 9926  df-card 9964  df-ac 10141  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-n0 12506  df-xnn0 12578  df-z 12592  df-uz 12856  df-ico 13365  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-word 14501  df-lsw 14549  df-concat 14557  df-s1 14582  df-substr 14627  df-pfx 14657  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-0g 17426  df-gsum 17427  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-rprm 20384  df-nzr 20464  df-subrg 20520  df-drng 20638  df-abv 20709  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-domn 21248  df-idom 21249  df-prmidl 33248  df-ufd 33351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator