Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2 Structured version   Visualization version   GIF version

Theorem dfufd2 33494
Description: Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
dfufd2 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Distinct variable groups:   0 ,𝑓,𝑥   𝐵,𝑓,𝑥   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓,𝑥   𝑈,𝑓,𝑥

Proof of Theorem dfufd2
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑅 ∈ UFD → 𝑅 ∈ UFD)
21ufdidom 33486 . . 3 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
3 dfufd2.b . . . . 5 𝐵 = (Base‘𝑅)
4 dfufd2.0 . . . . 5 0 = (0g𝑅)
5 dfufd2.u . . . . 5 𝑈 = (Unit‘𝑅)
6 dfufd2.p . . . . 5 𝑃 = (RPrime‘𝑅)
7 dfufd2.m . . . . 5 𝑀 = (mulGrp‘𝑅)
8 simpl 482 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑅 ∈ UFD)
9 simpr 484 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ ((𝐵𝑈) ∖ { 0 }))
109eldifad 3923 . . . . . 6 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ (𝐵𝑈))
1110eldifad 3923 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥𝐵)
1210eldifbd 3924 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ¬ 𝑥𝑈)
13 eldifsni 4750 . . . . . 6 (𝑥 ∈ ((𝐵𝑈) ∖ { 0 }) → 𝑥0 )
1413adantl 481 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥0 )
153, 4, 5, 6, 7, 8, 11, 12, 141arithufd 33492 . . . 4 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
1615ralrimiva 3125 . . 3 (𝑅 ∈ UFD → ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
172, 16jca 511 . 2 (𝑅 ∈ UFD → (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
18 simpl 482 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
19 id 22 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
2019idomringd 20613 . . . . . . . . . . . . . . 15 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
2120ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
2322eldifad 3923 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
24 prmidlidl 33388 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
26 eqid 2729 . . . . . . . . . . . . . 14 (LIdeal‘𝑅) = (LIdeal‘𝑅)
273, 26lidlss 21098 . . . . . . . . . . . . 13 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
2825, 27syl 17 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
2928sselda 3943 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦𝐵)
30 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑈)
31 simplr 768 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑖)
3221ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
3325ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 ∈ (LIdeal‘𝑅))
343, 5, 30, 31, 32, 33lidlunitel 33367 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 = 𝐵)
35 eqid 2729 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
363, 35prmidlnr 33383 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖𝐵)
3721, 23, 36syl2anc 584 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
3837ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖𝐵)
3938neneqd 2930 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → ¬ 𝑖 = 𝐵)
4034, 39pm2.65da 816 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → ¬ 𝑦𝑈)
4129, 40eldifd 3922 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ (𝐵𝑈))
42 simpllr 775 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦0 )
4341, 42eldifsnd 4747 . . . . . . . . 9 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ ((𝐵𝑈) ∖ { 0 }))
44 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑦 = (𝑀 Σg 𝑓)))
4544rexbidv 3157 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4645adantl 481 . . . . . . . . 9 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑥 = 𝑦) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4743, 46rspcdv 3577 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
48 simp-5l 784 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
4923ad3antrrr 730 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑖 ∈ (PrmIdeal‘𝑅))
50 simplr 768 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑓 ∈ Word 𝑃)
51 simpr 484 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 = (𝑀 Σg 𝑓))
52 simpllr 775 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦𝑖)
5351, 52eqeltrrd 2829 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ∈ 𝑖)
5442ad2antrr 726 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦0 )
5551, 54eqnetrrd 2993 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ≠ 0 )
563, 4, 5, 6, 7, 48, 49, 50, 53, 55dfufd2lem 33493 . . . . . . . . 9 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
5756rexlimdva2 3136 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5847, 57syld 47 . . . . . . 7 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5958imp 406 . . . . . 6 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
6059an52ds 32353 . . . . 5 (((((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦0 ) → (𝑖𝑃) ≠ ∅)
6120ad2antrr 726 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
62 simpr 484 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6362eldifad 3923 . . . . . . 7 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
6461, 63, 24syl2anc 584 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
65 eldifsni 4750 . . . . . . 7 (𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}) → 𝑖 ≠ { 0 })
6665adantl 481 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ≠ { 0 })
6726, 4lidlnz 21128 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖 ≠ { 0 }) → ∃𝑦𝑖 𝑦0 )
6861, 64, 66, 67syl3anc 1373 . . . . 5 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∃𝑦𝑖 𝑦0 )
6960, 68r19.29a 3141 . . . 4 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
7069ralrimiva 3125 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅)
71 eqid 2729 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
7271, 6, 4isufd 33484 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅))
7318, 70, 72sylanbrc 583 . 2 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ UFD)
7417, 73impbii 209 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  cin 3910  wss 3911  c0 4292  {csn 4585  cfv 6499  (class class class)co 7369  Word cword 14454  Basecbs 17155  .rcmulr 17197  0gc0g 17378   Σg cgsu 17379  mulGrpcmgp 20025  Ringcrg 20118  Unitcui 20240  RPrimecrpm 20317  IDomncidom 20578  LIdealclidl 21092  PrmIdealcprmidl 33379  UFDcufd 33482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-dju 9830  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rprm 20318  df-nzr 20398  df-subrg 20455  df-domn 20580  df-idom 20581  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-rsp 21095  df-prmidl 33380  df-ufd 33483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator