Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2 Structured version   Visualization version   GIF version

Theorem dfufd2 33578
Description: Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
dfufd2 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Distinct variable groups:   0 ,𝑓,𝑥   𝐵,𝑓,𝑥   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓,𝑥   𝑈,𝑓,𝑥

Proof of Theorem dfufd2
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑅 ∈ UFD → 𝑅 ∈ UFD)
21ufdidom 33570 . . 3 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
3 dfufd2.b . . . . 5 𝐵 = (Base‘𝑅)
4 dfufd2.0 . . . . 5 0 = (0g𝑅)
5 dfufd2.u . . . . 5 𝑈 = (Unit‘𝑅)
6 dfufd2.p . . . . 5 𝑃 = (RPrime‘𝑅)
7 dfufd2.m . . . . 5 𝑀 = (mulGrp‘𝑅)
8 simpl 482 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑅 ∈ UFD)
9 simpr 484 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ ((𝐵𝑈) ∖ { 0 }))
109eldifad 3963 . . . . . 6 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ (𝐵𝑈))
1110eldifad 3963 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥𝐵)
1210eldifbd 3964 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ¬ 𝑥𝑈)
13 eldifsni 4790 . . . . . 6 (𝑥 ∈ ((𝐵𝑈) ∖ { 0 }) → 𝑥0 )
1413adantl 481 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥0 )
153, 4, 5, 6, 7, 8, 11, 12, 141arithufd 33576 . . . 4 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
1615ralrimiva 3146 . . 3 (𝑅 ∈ UFD → ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
172, 16jca 511 . 2 (𝑅 ∈ UFD → (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
18 simpl 482 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
19 id 22 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
2019idomringd 20728 . . . . . . . . . . . . . . 15 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
2120ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
2322eldifad 3963 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
24 prmidlidl 33472 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
26 eqid 2737 . . . . . . . . . . . . . 14 (LIdeal‘𝑅) = (LIdeal‘𝑅)
273, 26lidlss 21222 . . . . . . . . . . . . 13 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
2825, 27syl 17 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
2928sselda 3983 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦𝐵)
30 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑈)
31 simplr 769 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑖)
3221ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
3325ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 ∈ (LIdeal‘𝑅))
343, 5, 30, 31, 32, 33lidlunitel 33451 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 = 𝐵)
35 eqid 2737 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
363, 35prmidlnr 33467 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖𝐵)
3721, 23, 36syl2anc 584 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
3837ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖𝐵)
3938neneqd 2945 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → ¬ 𝑖 = 𝐵)
4034, 39pm2.65da 817 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → ¬ 𝑦𝑈)
4129, 40eldifd 3962 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ (𝐵𝑈))
42 simpllr 776 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦0 )
4341, 42eldifsnd 4787 . . . . . . . . 9 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ ((𝐵𝑈) ∖ { 0 }))
44 eqeq1 2741 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑦 = (𝑀 Σg 𝑓)))
4544rexbidv 3179 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4645adantl 481 . . . . . . . . 9 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑥 = 𝑦) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4743, 46rspcdv 3614 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
48 simp-5l 785 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
4923ad3antrrr 730 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑖 ∈ (PrmIdeal‘𝑅))
50 simplr 769 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑓 ∈ Word 𝑃)
51 simpr 484 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 = (𝑀 Σg 𝑓))
52 simpllr 776 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦𝑖)
5351, 52eqeltrrd 2842 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ∈ 𝑖)
5442ad2antrr 726 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦0 )
5551, 54eqnetrrd 3009 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ≠ 0 )
563, 4, 5, 6, 7, 48, 49, 50, 53, 55dfufd2lem 33577 . . . . . . . . 9 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
5756rexlimdva2 3157 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5847, 57syld 47 . . . . . . 7 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5958imp 406 . . . . . 6 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
6059an52ds 32470 . . . . 5 (((((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦0 ) → (𝑖𝑃) ≠ ∅)
6120ad2antrr 726 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
62 simpr 484 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6362eldifad 3963 . . . . . . 7 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
6461, 63, 24syl2anc 584 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
65 eldifsni 4790 . . . . . . 7 (𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}) → 𝑖 ≠ { 0 })
6665adantl 481 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ≠ { 0 })
6726, 4lidlnz 21252 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖 ≠ { 0 }) → ∃𝑦𝑖 𝑦0 )
6861, 64, 66, 67syl3anc 1373 . . . . 5 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∃𝑦𝑖 𝑦0 )
6960, 68r19.29a 3162 . . . 4 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
7069ralrimiva 3146 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅)
71 eqid 2737 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
7271, 6, 4isufd 33568 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅))
7318, 70, 72sylanbrc 583 . 2 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ UFD)
7417, 73impbii 209 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  cin 3950  wss 3951  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  Word cword 14552  Basecbs 17247  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  mulGrpcmgp 20137  Ringcrg 20230  Unitcui 20355  RPrimecrpm 20432  IDomncidom 20693  LIdealclidl 21216  PrmIdealcprmidl 33463  UFDcufd 33566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7743  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-dju 9941  df-card 9979  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rprm 20433  df-nzr 20513  df-subrg 20570  df-domn 20695  df-idom 20696  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-prmidl 33464  df-ufd 33567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator