Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfufd2 Structured version   Visualization version   GIF version

Theorem dfufd2 33559
Description: Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of [BourbakiCAlg2], p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
dfufd2.b 𝐵 = (Base‘𝑅)
dfufd2.0 0 = (0g𝑅)
dfufd2.u 𝑈 = (Unit‘𝑅)
dfufd2.p 𝑃 = (RPrime‘𝑅)
dfufd2.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
dfufd2 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Distinct variable groups:   0 ,𝑓,𝑥   𝐵,𝑓,𝑥   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓,𝑥   𝑈,𝑓,𝑥

Proof of Theorem dfufd2
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑅 ∈ UFD → 𝑅 ∈ UFD)
21ufdidom 33551 . . 3 (𝑅 ∈ UFD → 𝑅 ∈ IDomn)
3 dfufd2.b . . . . 5 𝐵 = (Base‘𝑅)
4 dfufd2.0 . . . . 5 0 = (0g𝑅)
5 dfufd2.u . . . . 5 𝑈 = (Unit‘𝑅)
6 dfufd2.p . . . . 5 𝑃 = (RPrime‘𝑅)
7 dfufd2.m . . . . 5 𝑀 = (mulGrp‘𝑅)
8 simpl 482 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑅 ∈ UFD)
9 simpr 484 . . . . . . 7 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ ((𝐵𝑈) ∖ { 0 }))
109eldifad 3910 . . . . . 6 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥 ∈ (𝐵𝑈))
1110eldifad 3910 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥𝐵)
1210eldifbd 3911 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ¬ 𝑥𝑈)
13 eldifsni 4743 . . . . . 6 (𝑥 ∈ ((𝐵𝑈) ∖ { 0 }) → 𝑥0 )
1413adantl 481 . . . . 5 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → 𝑥0 )
153, 4, 5, 6, 7, 8, 11, 12, 141arithufd 33557 . . . 4 ((𝑅 ∈ UFD ∧ 𝑥 ∈ ((𝐵𝑈) ∖ { 0 })) → ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
1615ralrimiva 3125 . . 3 (𝑅 ∈ UFD → ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓))
172, 16jca 511 . 2 (𝑅 ∈ UFD → (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
18 simpl 482 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
19 id 22 . . . . . . . . . . . . . . . 16 (𝑅 ∈ IDomn → 𝑅 ∈ IDomn)
2019idomringd 20652 . . . . . . . . . . . . . . 15 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
2120ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
22 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
2322eldifad 3910 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
24 prmidlidl 33453 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
2521, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
26 eqid 2733 . . . . . . . . . . . . . 14 (LIdeal‘𝑅) = (LIdeal‘𝑅)
273, 26lidlss 21158 . . . . . . . . . . . . 13 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
2825, 27syl 17 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
2928sselda 3930 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦𝐵)
30 simpr 484 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑈)
31 simplr 768 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑦𝑖)
3221ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
3325ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 ∈ (LIdeal‘𝑅))
343, 5, 30, 31, 32, 33lidlunitel 33432 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖 = 𝐵)
35 eqid 2733 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
363, 35prmidlnr 33448 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (PrmIdeal‘𝑅)) → 𝑖𝐵)
3721, 23, 36syl2anc 584 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖𝐵)
3837ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → 𝑖𝐵)
3938neneqd 2934 . . . . . . . . . . . 12 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦𝑈) → ¬ 𝑖 = 𝐵)
4034, 39pm2.65da 816 . . . . . . . . . . 11 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → ¬ 𝑦𝑈)
4129, 40eldifd 3909 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ (𝐵𝑈))
42 simpllr 775 . . . . . . . . . 10 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦0 )
4341, 42eldifsnd 4740 . . . . . . . . 9 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → 𝑦 ∈ ((𝐵𝑈) ∖ { 0 }))
44 eqeq1 2737 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑦 = (𝑀 Σg 𝑓)))
4544rexbidv 3157 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4645adantl 481 . . . . . . . . 9 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑥 = 𝑦) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
4743, 46rspcdv 3565 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → ∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓)))
48 simp-5l 784 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑅 ∈ IDomn)
4923ad3antrrr 730 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑖 ∈ (PrmIdeal‘𝑅))
50 simplr 768 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑓 ∈ Word 𝑃)
51 simpr 484 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦 = (𝑀 Σg 𝑓))
52 simpllr 775 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦𝑖)
5351, 52eqeltrrd 2834 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ∈ 𝑖)
5442ad2antrr 726 . . . . . . . . . . 11 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → 𝑦0 )
5551, 54eqnetrrd 2997 . . . . . . . . . 10 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑀 Σg 𝑓) ≠ 0 )
563, 4, 5, 6, 7, 48, 49, 50, 53, 55dfufd2lem 33558 . . . . . . . . 9 ((((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑓 ∈ Word 𝑃) ∧ 𝑦 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
5756rexlimdva2 3136 . . . . . . . 8 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∃𝑓 ∈ Word 𝑃𝑦 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5847, 57syld 47 . . . . . . 7 ((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) → (∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) → (𝑖𝑃) ≠ ∅))
5958imp 406 . . . . . 6 (((((𝑅 ∈ IDomn ∧ 𝑦0 ) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → (𝑖𝑃) ≠ ∅)
6059an52ds 32451 . . . . 5 (((((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) ∧ 𝑦𝑖) ∧ 𝑦0 ) → (𝑖𝑃) ≠ ∅)
6120ad2antrr 726 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑅 ∈ Ring)
62 simpr 484 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}))
6362eldifad 3910 . . . . . . 7 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (PrmIdeal‘𝑅))
6461, 63, 24syl2anc 584 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ∈ (LIdeal‘𝑅))
65 eldifsni 4743 . . . . . . 7 (𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }}) → 𝑖 ≠ { 0 })
6665adantl 481 . . . . . 6 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → 𝑖 ≠ { 0 })
6726, 4lidlnz 21188 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑖 ≠ { 0 }) → ∃𝑦𝑖 𝑦0 )
6861, 64, 66, 67syl3anc 1373 . . . . 5 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → ∃𝑦𝑖 𝑦0 )
6960, 68r19.29a 3141 . . . 4 (((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) ∧ 𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})) → (𝑖𝑃) ≠ ∅)
7069ralrimiva 3125 . . 3 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅)
71 eqid 2733 . . . 4 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
7271, 6, 4isufd 33549 . . 3 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑅) ∖ {{ 0 }})(𝑖𝑃) ≠ ∅))
7318, 70, 72sylanbrc 583 . 2 ((𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)) → 𝑅 ∈ UFD)
7417, 73impbii 209 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑥 ∈ ((𝐵𝑈) ∖ { 0 })∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cdif 3895  cin 3897  wss 3898  c0 4282  {csn 4577  cfv 6489  (class class class)co 7355  Word cword 14427  Basecbs 17127  .rcmulr 17169  0gc0g 17350   Σg cgsu 17351  mulGrpcmgp 20066  Ringcrg 20159  Unitcui 20282  RPrimecrpm 20359  IDomncidom 20617  LIdealclidl 21152  PrmIdealcprmidl 33444  UFDcufd 33547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-ac2 10365  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-rpss 7665  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-dju 9805  df-card 9843  df-ac 10018  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-word 14428  df-lsw 14477  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-0g 17352  df-gsum 17353  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-cntz 19237  df-lsm 19556  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-rprm 20360  df-nzr 20437  df-subrg 20494  df-domn 20619  df-idom 20620  df-drng 20655  df-lmod 20804  df-lss 20874  df-lsp 20914  df-sra 21116  df-rgmod 21117  df-lidl 21154  df-rsp 21155  df-prmidl 33445  df-ufd 33548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator