Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  an42ds Structured version   Visualization version   GIF version

Theorem an42ds 32329
Description: Inference exchanging the last antecedent with the second one. See also an32s 650. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
an42ds.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
an42ds ((((𝜑𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏)

Proof of Theorem an42ds
StepHypRef Expression
1 an32 644 . . . 4 (((𝜑𝜓) ∧ 𝜃) ↔ ((𝜑𝜃) ∧ 𝜓))
21anbi1i 622 . . 3 ((((𝜑𝜓) ∧ 𝜃) ∧ 𝜒) ↔ (((𝜑𝜃) ∧ 𝜓) ∧ 𝜒))
3 an32 644 . . 3 ((((𝜑𝜓) ∧ 𝜃) ∧ 𝜒) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))
4 an32 644 . . 3 ((((𝜑𝜃) ∧ 𝜓) ∧ 𝜒) ↔ (((𝜑𝜃) ∧ 𝜒) ∧ 𝜓))
52, 3, 43bitr3i 300 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ↔ (((𝜑𝜃) ∧ 𝜒) ∧ 𝜓))
6 an42ds.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
75, 6sylbir 234 1 ((((𝜑𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  an52ds  32330
  Copyright terms: Public domain W3C validator