| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > an42ds | Structured version Visualization version GIF version | ||
| Description: Inference exchanging the last antecedent with the second one. See also an32s 652. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| an42ds.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| an42ds | ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 646 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜃) ∧ 𝜓)) | |
| 2 | 1 | anbi1i 624 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜒) ↔ (((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜒)) |
| 3 | an32 646 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜒) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃)) | |
| 4 | an32 646 | . . 3 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜒) ↔ (((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr3i 301 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ↔ (((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓)) |
| 6 | an42ds.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 7 | 5, 6 | sylbir 235 | 1 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an52ds 32460 chnind 32991 mndlrinvb 33020 fldextrspunlsplem 33716 |
| Copyright terms: Public domain | W3C validator |