![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > an42ds | Structured version Visualization version GIF version |
Description: Inference exchanging the last antecedent with the second one. See also an32s 650. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
an42ds.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
an42ds | ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 644 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜃) ∧ 𝜓)) | |
2 | 1 | anbi1i 622 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜒) ↔ (((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜒)) |
3 | an32 644 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜒) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃)) | |
4 | an32 644 | . . 3 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜒) ↔ (((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓)) | |
5 | 2, 3, 4 | 3bitr3i 300 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ↔ (((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓)) |
6 | an42ds.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
7 | 5, 6 | sylbir 234 | 1 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: an52ds 32330 |
Copyright terms: Public domain | W3C validator |