Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  an72ds Structured version   Visualization version   GIF version

Theorem an72ds 32332
Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypothesis
Ref Expression
an72ds.1 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎)
Assertion
Ref Expression
an72ds (((((((𝜑𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎)

Proof of Theorem an72ds
StepHypRef Expression
1 an32 644 . . . . . 6 (((𝜑𝜓) ∧ 𝜁) ↔ ((𝜑𝜁) ∧ 𝜓))
21anbi1i 622 . . . . 5 ((((𝜑𝜓) ∧ 𝜁) ∧ 𝜃) ↔ (((𝜑𝜁) ∧ 𝜓) ∧ 𝜃))
32anbi1i 622 . . . 4 (((((𝜑𝜓) ∧ 𝜁) ∧ 𝜃) ∧ 𝜏) ↔ ((((𝜑𝜁) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏))
43anbi1i 622 . . 3 ((((((𝜑𝜓) ∧ 𝜁) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ↔ (((((𝜑𝜁) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂))
5 an72ds.1 . . . 4 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎)
65an62ds 32331 . . 3 (((((((𝜑𝜓) ∧ 𝜁) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜎)
74, 6sylanbr 580 . 2 (((((((𝜑𝜁) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜎)
87an62ds 32331 1 (((((((𝜑𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  an82ds  32333  1arithufdlem3  33361
  Copyright terms: Public domain W3C validator