![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > an72ds | Structured version Visualization version GIF version |
Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
an72ds.1 | ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎) |
Ref | Expression |
---|---|
an72ds | ⊢ (((((((𝜑 ∧ 𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 644 | . . . . . 6 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜁) ↔ ((𝜑 ∧ 𝜁) ∧ 𝜓)) | |
2 | 1 | anbi1i 622 | . . . . 5 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜁) ∧ 𝜃) ↔ (((𝜑 ∧ 𝜁) ∧ 𝜓) ∧ 𝜃)) |
3 | 2 | anbi1i 622 | . . . 4 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜁) ∧ 𝜃) ∧ 𝜏) ↔ ((((𝜑 ∧ 𝜁) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏)) |
4 | 3 | anbi1i 622 | . . 3 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜁) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ↔ (((((𝜑 ∧ 𝜁) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂)) |
5 | an72ds.1 | . . . 4 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎) | |
6 | 5 | an62ds 32331 | . . 3 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜁) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜎) |
7 | 4, 6 | sylanbr 580 | . 2 ⊢ (((((((𝜑 ∧ 𝜁) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜎) |
8 | 7 | an62ds 32331 | 1 ⊢ (((((((𝜑 ∧ 𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: an82ds 32333 1arithufdlem3 33361 |
Copyright terms: Public domain | W3C validator |