![]() |
Metamath
Proof Explorer Theorem List (p. 326 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ordtcnvNEW 32501 | The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) (Revised by Thierry Arnoux, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ (𝐾 ∈ Proset → (ordTop‘◡ ≤ ) = (ordTop‘ ≤ )) | ||
Theorem | ordtrestNEW 32502 | The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ≤ ) ↾t 𝐴)) | ||
Theorem | ordtrest2NEWlem 32503* | Lemma for ordtrest2NEW 32504. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) | ||
Theorem | ordtrest2NEW 32504* | An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in ℝ, but in other sets like ℚ there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)) | ||
Theorem | ordtconnlem1 32505* | Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn 32506. See also reconnlem1 24189. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → ((𝐽 ↾t 𝐴) ∈ Conn → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴))) | ||
Theorem | ordtconn 32506 | Connectedness in the order topology of a complete uniform totally ordered space. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ⊤ | ||
Theorem | mndpluscn 32507* | A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
⊢ 𝐹 ∈ (𝐽Homeo𝐾) & ⊢ + :(𝐵 × 𝐵)⟶𝐵 & ⊢ ∗ :(𝐶 × 𝐶)⟶𝐶 & ⊢ 𝐽 ∈ (TopOn‘𝐵) & ⊢ 𝐾 ∈ (TopOn‘𝐶) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) & ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ⇒ ⊢ ∗ ∈ ((𝐾 ×t 𝐾) Cn 𝐾) | ||
Theorem | mhmhmeotmd 32508 | Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
⊢ 𝐹 ∈ (𝑆 MndHom 𝑇) & ⊢ 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇)) & ⊢ 𝑆 ∈ TopMnd & ⊢ 𝑇 ∈ TopSp ⇒ ⊢ 𝑇 ∈ TopMnd | ||
Theorem | rmulccn 32509* | Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | raddcn 32510* | Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | xrmulc1cn 32511* | The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ 𝐽 = (ordTop‘ ≤ ) & ⊢ 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | fmcncfil 32512 | The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) | ||
Theorem | xrge0hmph 32513 | The extended nonnegative reals are homeomorphic to the closed unit interval. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ II ≃ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | ||
Theorem | xrge0iifcnv 32514* | Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) | ||
Theorem | xrge0iifcv 32515* | The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) | ||
Theorem | xrge0iifiso 32516* | The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ 𝐹 Isom < , ◡ < ((0[,]1), (0[,]+∞)) | ||
Theorem | xrge0iifhmeo 32517* | Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ 𝐹 ∈ (IIHomeo𝐽) | ||
Theorem | xrge0iifhom 32518* | The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) +𝑒 (𝐹‘𝑌))) | ||
Theorem | xrge0iif1 32519* | Condition for the defined function, -(log‘𝑥) to be a monoid homomorphism. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ (𝐹‘1) = 0 | ||
Theorem | xrge0iifmhm 32520* | The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) | ||
Theorem | xrge0pluscn 32521* | The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) & ⊢ + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | xrge0mulc1cn 32522* | The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | xrge0tps 32523 | The extended nonnegative real numbers monoid forms a topological space. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | ||
Theorem | xrge0topn 32524 | The topology of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | ||
Theorem | xrge0haus 32525 | The topology of the extended nonnegative real numbers is Hausdorff. (Contributed by Thierry Arnoux, 26-Jul-2017.) |
⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) ∈ Haus | ||
Theorem | xrge0tmd 32526 | The extended nonnegative real numbers monoid is a topological monoid. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof Shortened by Thierry Arnoux, 21-Jun-2017.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | ||
Theorem | xrge0tmdALT 32527 | Alternate proof of xrge0tmd 32526. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | ||
Theorem | lmlim 32528 | Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on ℂ on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
⊢ 𝐽 ∈ (TopOn‘𝑌) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) & ⊢ 𝑋 ⊆ ℂ ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) | ||
Theorem | lmlimxrge0 32529 | Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ 𝑋 ⊆ (0[,)+∞) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) | ||
Theorem | rge0scvg 32530 | Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 16793. (Contributed by Thierry Arnoux, 28-Jul-2017.) |
⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ) | ||
Theorem | fsumcvg4 32531 | A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝑆 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) ∈ Fin) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
Theorem | pnfneige0 32532* | A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 22571. (Contributed by Thierry Arnoux, 31-Jul-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) | ||
Theorem | lmxrge0 32533* | Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < 𝐴)) | ||
Theorem | lmdvg 32534* | If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) & ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) | ||
Theorem | lmdvglim 32535* | If a monotonic real number sequence 𝐹 diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017.) |
⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) & ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)+∞) | ||
Theorem | pl1cn 32536 | A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐸‘𝐹) ∈ (𝐽 Cn 𝐽)) | ||
Syntax | chcmp 32537 | Extend class notation with the Hausdorff uniform completion relation. |
class HCmp | ||
Definition | df-hcmp 32538* | Definition of the Hausdorff completion. In this definition, a structure 𝑤 is a Hausdorff completion of a uniform structure 𝑢 if 𝑤 is a complete uniform space, in which 𝑢 is dense, and which admits the same uniform structure. Theorem 3 of [BourbakiTop1] p. II.21. states the existence and uniqueness of such a completion. (Contributed by Thierry Arnoux, 5-Mar-2018.) |
⊢ HCmp = {〈𝑢, 𝑤〉 ∣ ((𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom ∪ 𝑢) = 𝑢 ∧ ((cls‘(TopOpen‘𝑤))‘dom ∪ 𝑢) = (Base‘𝑤))} | ||
Theorem | zringnm 32539 | The norm (function) for a ring of integers is the absolute value function (restricted to the integers). (Contributed by AV, 13-Jun-2019.) |
⊢ (norm‘ℤring) = (abs ↾ ℤ) | ||
Theorem | zzsnm 32540 | The norm of the ring of the integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 13-Jun-2019.) |
⊢ (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) | ||
Theorem | zlm0 32541 | Zero of a ℤ-module. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ 0 = (0g‘𝑊) | ||
Theorem | zlm1 32542 | Unity element of a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 1 = (1r‘𝐺) ⇒ ⊢ 1 = (1r‘𝑊) | ||
Theorem | zlmds 32543 | Distance in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof shortened by AV, 11-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
Theorem | zlmdsOLD 32544 | Obsolete proof of zlmds 32543 as of 11-Nov-2024. Distance in a ℤ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
Theorem | zlmtset 32545 | Topology in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof shortened by AV, 12-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | zlmtsetOLD 32546 | Obsolete proof of zlmtset 32545 as of 11-Nov-2024. Topology in a ℤ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | zlmnm 32547 | Norm of a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (norm‘𝑊)) | ||
Theorem | zhmnrg 32548 | The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) | ||
Theorem | nmmulg 32549 | The norm of a group product, provided the ℤ-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ · = (.g‘𝑅) ⇒ ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) | ||
Theorem | zrhnm 32550 | The norm of the image by ℤRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) | ||
Theorem | cnzh 32551 | The ℤ-module of ℂ is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.) |
⊢ (ℤMod‘ℂfld) ∈ NrmMod | ||
Theorem | rezh 32552 | The ℤ-module of ℝ is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
⊢ (ℤMod‘ℝfld) ∈ NrmMod | ||
Syntax | cqqh 32553 | Map the rationals into a field. |
class ℚHom | ||
Definition | df-qqh 32554* | Define the canonical homomorphism from the rationals into any field. (Contributed by Mario Carneiro, 22-Oct-2017.) (Revised by Thierry Arnoux, 23-Oct-2017.) |
⊢ ℚHom = (𝑟 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉)) | ||
Theorem | qqhval 32555* | Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) | ||
Theorem | zrhf1ker 32556 | The kernel of the homomorphism from the integers to a ring, if it is injective. (Contributed by Thierry Arnoux, 26-Oct-2017.) (Revised by Thierry Arnoux, 23-May-2023.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐿:ℤ–1-1→𝐵 ↔ (◡𝐿 “ { 0 }) = {0})) | ||
Theorem | zrhchr 32557 | The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ 𝐿:ℤ–1-1→𝐵)) | ||
Theorem | zrhker 32558 | The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (◡𝐿 “ { 0 }) = {0})) | ||
Theorem | zrhunitpreima 32559 | The preimage by ℤRHom of the units of a division ring is (ℤ ∖ {0}). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) | ||
Theorem | elzrhunit 32560 | Condition for the image by ℤRHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) | ||
Theorem | elzdif0 32561 | Lemma for qqhval2 32563. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) | ||
Theorem | qqhval2lem 32562 | Lemma for qqhval2 32563. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿‘𝑋) / (𝐿‘𝑌))) | ||
Theorem | qqhval2 32563* | Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) | ||
Theorem | qqhvval 32564 | Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) | ||
Theorem | qqh0 32565 | The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) | ||
Theorem | qqh1 32566 | The image of 1 by the ℚHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) | ||
Theorem | qqhf 32567 | ℚHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵) | ||
Theorem | qqhvq 32568 | The image of a quotient by the ℚHom homomorphism. (Contributed by Thierry Arnoux, 28-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((ℚHom‘𝑅)‘(𝑋 / 𝑌)) = ((𝐿‘𝑋) / (𝐿‘𝑌))) | ||
Theorem | qqhghm 32569 | The ℚHom homomorphism is a group homomorphism if the target structure is a division ring. (Contributed by Thierry Arnoux, 9-Nov-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅)) | ||
Theorem | qqhrhm 32570 | The ℚHom homomorphism is a ring homomorphism if the target structure is a field. If the target structure is a division ring, it is a group homomorphism, but not a ring homomorphism, because it does not preserve the ring multiplication operation. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅)) | ||
Theorem | qqhnm 32571 | The norm of the image by ℚHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄)) | ||
Theorem | qqhcn 32572 | The ℚHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐽 = (TopOpen‘𝑄) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | qqhucn 32573 | The ℚHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝑈 = (UnifSt‘𝑄) & ⊢ 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) ⇒ ⊢ (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉)) | ||
Syntax | crrh 32574 | Map the real numbers into a complete field. |
class ℝHom | ||
Syntax | crrext 32575 | Extend class notation with the class of extension fields of ℝ. |
class ℝExt | ||
Definition | df-rrh 32576 | Define the canonical homomorphism from the real numbers to any complete field, as the extension by continuity of the canonical homomorphism from the rational numbers. (Contributed by Mario Carneiro, 22-Oct-2017.) (Revised by Thierry Arnoux, 23-Oct-2017.) |
⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | ||
Theorem | rrhval 32577 | Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) | ||
Theorem | rrhcn 32578 | If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) & ⊢ (𝜑 → 𝑅 ∈ CUnifSp) & ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) ⇒ ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | rrhf 32579 | If the topology of 𝑅 is Hausdorff, Cauchy sequences have at most one limit, i.e. the canonical homomorphism of ℝ into 𝑅 is a function. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) & ⊢ (𝜑 → 𝑅 ∈ CUnifSp) & ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) ⇒ ⊢ (𝜑 → (ℝHom‘𝑅):ℝ⟶𝐵) | ||
Definition | df-rrext 32580 | Define the class of extensions of ℝ. This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of ℝ into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (ℤ, ℚ and ℝ). It would be interesting see if this is formally treated in the literature. See isrrext 32581 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} | ||
Theorem | isrrext 32581 | Express the property "𝑅 is an extension of ℝ". (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) | ||
Theorem | rrextnrg 32582 | An extension of ℝ is a normed ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | ||
Theorem | rrextdrg 32583 | An extension of ℝ is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | ||
Theorem | rrextnlm 32584 | The norm of an extension of ℝ is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) | ||
Theorem | rrextchr 32585 | The ring characteristic of an extension of ℝ is zero. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) | ||
Theorem | rrextcusp 32586 | An extension of ℝ is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) | ||
Theorem | rrexttps 32587 | An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) | ||
Theorem | rrexthaus 32588 | The topology of an extension of ℝ is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → 𝐾 ∈ Haus) | ||
Theorem | rrextust 32589 | The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ⇒ ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) | ||
Theorem | rerrext 32590 | The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ ℝfld ∈ ℝExt | ||
Theorem | cnrrext 32591 | The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ ℂfld ∈ ℝExt | ||
Theorem | qqtopn 32592 | The topology of the field of the rational numbers. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
⊢ ((TopOpen‘ℝfld) ↾t ℚ) = (TopOpen‘(ℂfld ↾s ℚ)) | ||
Theorem | rrhfe 32593 | If 𝑅 is an extension of ℝ, then the canonical homomorphism of ℝ into 𝑅 is a function. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅):ℝ⟶𝐵) | ||
Theorem | rrhcne 32594 | If 𝑅 is an extension of ℝ, then the canonical homomorphism of ℝ into 𝑅 is continuous. (Contributed by Thierry Arnoux, 2-May-2018.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | rrhqima 32595 | The ℝHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
⊢ ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((ℚHom‘𝑅)‘𝑄)) | ||
Theorem | rrh0 32596 | The image of 0 by the ℝHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g‘𝑅)) | ||
Syntax | cxrh 32597 | Map the extended real numbers into a complete lattice. |
class ℝ*Hom | ||
Definition | df-xrh 32598* | Define an embedding from the extended real number into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))))) | ||
Theorem | xrhval 32599* | The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) & ⊢ 𝐿 = (glb‘𝑅) & ⊢ 𝑈 = (lub‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) | ||
Theorem | zrhre 32600 | The ℤRHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.) |
⊢ (ℤRHom‘ℝfld) = ( I ↾ ℤ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |