Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem3 Structured version   Visualization version   GIF version

Theorem 1arithufdlem3 33493
Description: Lemma for 1arithufd 33495. If a product (𝑌 · 𝑋) can be written as a product of primes, with 𝑋 non-unit, nonzero, so can 𝑋. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem.3 (𝜑𝑋𝐵)
1arithufdlem.4 (𝜑 → ¬ 𝑋𝑈)
1arithufdlem.5 (𝜑𝑋0 )
1arithufdlem3.p · = (.r𝑅)
1arithufdlem3.y (𝜑𝑌𝐵)
1arithufdlem3.1 (𝜑 → (𝑌 · 𝑋) ∈ 𝑆)
Assertion
Ref Expression
1arithufdlem3 (𝜑𝑋𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓,𝑥   𝑥,𝑋   𝑥,𝑈   𝑓,𝑌,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥, 0   𝑈,𝑓   𝐵,𝑓   𝑓,𝑋   · ,𝑓,𝑥   𝑆,𝑓

Proof of Theorem 1arithufdlem3
Dummy variables 𝑝 𝑐 𝑣 𝑘 𝑡 𝑤 𝑧 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . . . . 5 (𝑦 = 𝑌 → (𝑦 · 𝑋) = (𝑌 · 𝑋))
21eqeq1d 2731 . . . 4 (𝑦 = 𝑌 → ((𝑦 · 𝑋) = (𝑀 Σg 𝑓) ↔ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
3 1arithufdlem3.y . . . . 5 (𝜑𝑌𝐵)
43ad2antrr 726 . . . 4 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → 𝑌𝐵)
5 simpr 484 . . . 4 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → (𝑌 · 𝑋) = (𝑀 Σg 𝑓))
62, 4, 5rspcedvdw 3582 . . 3 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → ∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓))
7 oveq2 7361 . . . . . . . 8 (𝑧 = 𝑋 → (𝑦 · 𝑧) = (𝑦 · 𝑋))
87eqeq1d 2731 . . . . . . 7 (𝑧 = 𝑋 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑓) ↔ (𝑦 · 𝑋) = (𝑀 Σg 𝑓)))
98rexbidv 3153 . . . . . 6 (𝑧 = 𝑋 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) ↔ ∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓)))
10 eleq1 2816 . . . . . 6 (𝑧 = 𝑋 → (𝑧𝑆𝑋𝑆))
119, 10imbi12d 344 . . . . 5 (𝑧 = 𝑋 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓) → 𝑋𝑆)))
12 oveq2 7361 . . . . . . . . . . . 12 (𝑐 = ∅ → (𝑀 Σg 𝑐) = (𝑀 Σg ∅))
1312eqeq2d 2740 . . . . . . . . . . 11 (𝑐 = ∅ → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg ∅)))
1413rexbidv 3153 . . . . . . . . . 10 (𝑐 = ∅ → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅)))
1514imbi1d 341 . . . . . . . . 9 (𝑐 = ∅ → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆)))
1615ralbidv 3152 . . . . . . . 8 (𝑐 = ∅ → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆)))
1716imbi2d 340 . . . . . . 7 (𝑐 = ∅ → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆))))
18 oveq2 7361 . . . . . . . . . . . 12 (𝑐 = 𝑑 → (𝑀 Σg 𝑐) = (𝑀 Σg 𝑑))
1918eqeq2d 2740 . . . . . . . . . . 11 (𝑐 = 𝑑 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg 𝑑)))
2019rexbidv 3153 . . . . . . . . . 10 (𝑐 = 𝑑 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑)))
2120imbi1d 341 . . . . . . . . 9 (𝑐 = 𝑑 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)))
2221ralbidv 3152 . . . . . . . 8 (𝑐 = 𝑑 → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)))
2322imbi2d 340 . . . . . . 7 (𝑐 = 𝑑 → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆))))
24 oveq2 7361 . . . . . . . . . . . 12 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → (𝑀 Σg 𝑐) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)))
2524eqeq2d 2740 . . . . . . . . . . 11 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
2625rexbidv 3153 . . . . . . . . . 10 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
2726imbi1d 341 . . . . . . . . 9 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
2827ralbidv 3152 . . . . . . . 8 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
2928imbi2d 340 . . . . . . 7 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))))
30 oveq2 7361 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑀 Σg 𝑐) = (𝑀 Σg 𝑓))
3130eqeq2d 2740 . . . . . . . . . . 11 (𝑐 = 𝑓 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg 𝑓)))
3231rexbidv 3153 . . . . . . . . . 10 (𝑐 = 𝑓 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓)))
3332imbi1d 341 . . . . . . . . 9 (𝑐 = 𝑓 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆)))
3433ralbidv 3152 . . . . . . . 8 (𝑐 = 𝑓 → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆)))
3534imbi2d 340 . . . . . . 7 (𝑐 = 𝑓 → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆))))
36 1arithufd.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ UFD)
3736ufdidom 33489 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ IDomn)
3837idomcringd 20630 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
3938ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑅 ∈ CRing)
40 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑦𝐵)
41 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧 ∈ ((𝐵𝑈) ∖ { 0 }))
4241eldifad 3917 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧 ∈ (𝐵𝑈))
4342eldifad 3917 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧𝐵)
44 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (𝑦 · 𝑧) = (𝑀 Σg ∅))
45 1arithufd.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
46 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
4745, 46ringidval 20086 . . . . . . . . . . . . . . 15 (1r𝑅) = (0g𝑀)
4847gsum0 18576 . . . . . . . . . . . . . 14 (𝑀 Σg ∅) = (1r𝑅)
4944, 48eqtrdi 2780 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (𝑦 · 𝑧) = (1r𝑅))
5039crngringd 20149 . . . . . . . . . . . . . 14 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑅 ∈ Ring)
51 1arithufd.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑅)
5251, 461unit 20277 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
5350, 52syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (1r𝑅) ∈ 𝑈)
5449, 53eqeltrd 2828 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (𝑦 · 𝑧) ∈ 𝑈)
55 1arithufdlem3.p . . . . . . . . . . . . . 14 · = (.r𝑅)
56 1arithufd.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑅)
5751, 55, 56unitmulclb 20284 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑦𝐵𝑧𝐵) → ((𝑦 · 𝑧) ∈ 𝑈 ↔ (𝑦𝑈𝑧𝑈)))
5857simplbda 499 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑦𝐵𝑧𝐵) ∧ (𝑦 · 𝑧) ∈ 𝑈) → 𝑧𝑈)
5939, 40, 43, 54, 58syl31anc 1375 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧𝑈)
6042eldifbd 3918 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → ¬ 𝑧𝑈)
6159, 60condan 817 . . . . . . . . . 10 ((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) → 𝑧𝑆)
6261r19.29an 3133 . . . . . . . . 9 (((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅)) → 𝑧𝑆)
6362ex 412 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆))
6463ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆))
65 oveq1 7360 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝑦 · 𝑡) = (𝑤 · 𝑡))
6665eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
6766cbvrexvw 3208 . . . . . . . . . . . . . . 15 (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ ∃𝑤𝐵 (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)))
68 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (∥r𝑅) = (∥r𝑅)
6956, 68, 55dvdsr 20265 . . . . . . . . . . . . . . . . . 18 (𝑝(∥r𝑅)𝑤 ↔ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑤))
70 oveq1 7360 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑘 → (𝑣 · 𝑡) = (𝑘 · 𝑡))
7170eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑘 → ((𝑣 · 𝑡) = (𝑀 Σg 𝑑) ↔ (𝑘 · 𝑡) = (𝑀 Σg 𝑑)))
72 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑘𝐵)
73 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0g𝑅) = (0g𝑅)
74 1arithufd.p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑃 = (RPrime‘𝑅)
7536adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑝𝑃) → 𝑅 ∈ UFD)
76 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑝𝑃) → 𝑝𝑃)
7756, 74, 75, 76rprmcl 33465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑝𝑃) → 𝑝𝐵)
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝑝𝑃𝑝𝐵))
7978ssrdv 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃𝐵)
8079ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑃𝐵)
81 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝𝑃)
8280, 81sseldd 3938 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝𝐵)
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝𝐵)
8436ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑅 ∈ UFD)
8584ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ UFD)
8681ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝𝑃)
8774, 73, 85, 86rprmnz 33467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝 ≠ (0g𝑅))
8883, 87eldifsnd 4741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝 ∈ (𝐵 ∖ {(0g𝑅)}))
8945, 56mgpbas 20048 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐵 = (Base‘𝑀)
9045crngmgp 20144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
9138, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑀 ∈ CMnd)
9291ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑀 ∈ CMnd)
93 ovexd 7388 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (0..^(♯‘𝑑)) ∈ V)
94 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (♯‘𝑑) = (♯‘𝑑))
95 sswrd 14447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵)
9679, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → Word 𝑃 ⊆ Word 𝐵)
9796sselda 3937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑 ∈ Word 𝑃) → 𝑑 ∈ Word 𝐵)
9897ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑 ∈ Word 𝐵)
9994, 98wrdfd 14444 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑:(0..^(♯‘𝑑))⟶𝐵)
10038crngringd 20149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑅 ∈ Ring)
101100, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (1r𝑅) ∈ 𝑈)
102101ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (1r𝑅) ∈ 𝑈)
103 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑 ∈ Word 𝑃)
104102, 103wrdfsupp 32891 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑 finSupp (1r𝑅))
10589, 47, 92, 93, 99, 104gsumcl 19812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑀 Σg 𝑑) ∈ 𝐵)
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑀 Σg 𝑑) ∈ 𝐵)
107100ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ Ring)
108 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡 ∈ ((𝐵𝑈) ∖ { 0 }))
109108eldifad 3917 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡 ∈ (𝐵𝑈))
110109eldifad 3917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝐵)
111110ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑡𝐵)
11256, 55, 107, 72, 111ringcld 20163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · 𝑡) ∈ 𝐵)
11337idomdomd 20629 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ∈ Domn)
114113ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ Domn)
11538ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ CRing)
11656, 55, 115, 83, 106crngcomd 20158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑝 · (𝑀 Σg 𝑑)) = ((𝑀 Σg 𝑑) · 𝑝))
117 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)))
11845ringmgp 20142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
119100, 118syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑀 ∈ Mnd)
120119ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑀 ∈ Mnd)
12145, 55mgpplusg 20047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 · = (+g𝑀)
12289, 121gsumccatsn 18735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ Mnd ∧ 𝑑 ∈ Word 𝐵𝑝𝐵) → (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑑) · 𝑝))
123120, 98, 82, 122syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑑) · 𝑝))
124117, 123eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑤 · 𝑡) = ((𝑀 Σg 𝑑) · 𝑝))
125124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑤 · 𝑡) = ((𝑀 Σg 𝑑) · 𝑝))
12656, 55, 107, 72, 83, 111ringassd 20160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ((𝑘 · 𝑝) · 𝑡) = (𝑘 · (𝑝 · 𝑡)))
127 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · 𝑝) = 𝑤)
128127oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ((𝑘 · 𝑝) · 𝑡) = (𝑤 · 𝑡))
12956, 55, 115, 72, 83, 111crng12d 20161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · (𝑝 · 𝑡)) = (𝑝 · (𝑘 · 𝑡)))
130126, 128, 1293eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑤 · 𝑡) = (𝑝 · (𝑘 · 𝑡)))
131116, 125, 1303eqtr2d 2770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑝 · (𝑀 Σg 𝑑)) = (𝑝 · (𝑘 · 𝑡)))
13256, 73, 55, 88, 106, 112, 114, 131domnlcan 20624 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑀 Σg 𝑑) = (𝑘 · 𝑡))
133132eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · 𝑡) = (𝑀 Σg 𝑑))
13471, 72, 133rspcedvdw 3582 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ∃𝑣𝐵 (𝑣 · 𝑡) = (𝑀 Σg 𝑑))
135 oveq1 7360 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → (𝑦 · 𝑡) = (𝑣 · 𝑡))
136135eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑣 → ((𝑦 · 𝑡) = (𝑀 Σg 𝑑) ↔ (𝑣 · 𝑡) = (𝑀 Σg 𝑑)))
137136cbvrexvw 3208 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) ↔ ∃𝑣𝐵 (𝑣 · 𝑡) = (𝑀 Σg 𝑑))
138134, 137sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑))
139 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → 𝑡 ∈ ((𝐵𝑈) ∖ { 0 }))
140 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑡 → (𝑦 · 𝑧) = (𝑦 · 𝑡))
141140eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑡 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ (𝑦 · 𝑡) = (𝑀 Σg 𝑑)))
142141rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑡 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑)))
143 eleq1w 2811 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑡 → (𝑧𝑆𝑡𝑆))
144142, 143imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑡 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆)))
145144adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑧 = 𝑡) → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆)))
146139, 145rspcdv 3571 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆)))
147146imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆))
148147an72ds 32415 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆))
149138, 148mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑡𝑆)
150149r19.29an 3133 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑤) → 𝑡𝑆)
151150adantrl 716 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑤)) → 𝑡𝑆)
15269, 151sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑝(∥r𝑅)𝑤) → 𝑡𝑆)
15356, 68, 55dvdsr 20265 . . . . . . . . . . . . . . . . . 18 (𝑝(∥r𝑅)𝑡 ↔ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑡))
154 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑡 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑡 = (𝑀 Σg 𝑓)))
155154rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑡 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑡 = (𝑀 Σg 𝑓)))
156110ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡𝐵)
157 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ⟨“𝑡”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑡”⟩))
158157eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ⟨“𝑡”⟩ → (𝑡 = (𝑀 Σg 𝑓) ↔ 𝑡 = (𝑀 Σg ⟨“𝑡”⟩)))
159 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → (𝑘 · 𝑝) = 𝑡)
16037ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑅 ∈ IDomn)
161160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑅 ∈ IDomn)
162 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑘𝑈)
16381ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝𝑃)
164163adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑝𝑃)
16574, 51, 55, 161, 162, 164unitmulrprm 33475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → (𝑘 · 𝑝) ∈ 𝑃)
166159, 165eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡𝑃)
167166s1cld 14528 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → ⟨“𝑡”⟩ ∈ Word 𝑃)
16889gsumws1 18730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝐵 → (𝑀 Σg ⟨“𝑡”⟩) = 𝑡)
169156, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → (𝑀 Σg ⟨“𝑡”⟩) = 𝑡)
170169eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡 = (𝑀 Σg ⟨“𝑡”⟩))
171158, 167, 170rspcedvdw 3582 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → ∃𝑓 ∈ Word 𝑃𝑡 = (𝑀 Σg 𝑓))
172155, 156, 171elrabd 3652 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
173 1arithufdlem.s . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
174172, 173eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡𝑆)
175 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → (𝑘 · 𝑝) = 𝑡)
176 1arithufd.0 . . . . . . . . . . . . . . . . . . . . . . 23 0 = (0g𝑅)
17784ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑅 ∈ UFD)
178177adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑅 ∈ UFD)
179 1arithufdlem.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ¬ 𝑅 ∈ DivRing)
180179ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ¬ 𝑅 ∈ DivRing)
181180adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → ¬ 𝑅 ∈ DivRing)
182 oveq1 7360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = 𝑤 → (𝑣 · 𝑘) = (𝑤 · 𝑘))
183182eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = 𝑤 → ((𝑣 · 𝑘) = (𝑀 Σg 𝑑) ↔ (𝑤 · 𝑘) = (𝑀 Σg 𝑑)))
184 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑤𝐵)
185100ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑅 ∈ Ring)
186 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑘𝐵)
18756, 55, 185, 184, 186ringcld 20163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · 𝑘) ∈ 𝐵)
188105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑀 Σg 𝑑) ∈ 𝐵)
18982ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝𝐵)
19074, 176, 177, 163rprmnz 33467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝0 )
191189, 190eldifsnd 4741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝 ∈ (𝐵 ∖ { 0 }))
19256, 55, 185, 184, 186, 189ringassd 20160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ((𝑤 · 𝑘) · 𝑝) = (𝑤 · (𝑘 · 𝑝)))
193 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑘 · 𝑝) = 𝑡)
194193oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · (𝑘 · 𝑝)) = (𝑤 · 𝑡))
195124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · 𝑡) = ((𝑀 Σg 𝑑) · 𝑝))
196192, 194, 1953eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ((𝑤 · 𝑘) · 𝑝) = ((𝑀 Σg 𝑑) · 𝑝))
19756, 176, 55, 187, 188, 191, 160, 196idomrcan 33228 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · 𝑘) = (𝑀 Σg 𝑑))
198183, 184, 197rspcedvdw 3582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ∃𝑣𝐵 (𝑣 · 𝑘) = (𝑀 Σg 𝑑))
199 oveq1 7360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑣 → (𝑦 · 𝑘) = (𝑣 · 𝑘))
200199eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑣 → ((𝑦 · 𝑘) = (𝑀 Σg 𝑑) ↔ (𝑣 · 𝑘) = (𝑀 Σg 𝑑)))
201200cbvrexvw 3208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) ↔ ∃𝑣𝐵 (𝑣 · 𝑘) = (𝑀 Σg 𝑑))
202198, 201sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑))
203202adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → ∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑))
204 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘𝐵)
205 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → ¬ 𝑘𝑈)
206204, 205eldifd 3916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘 ∈ (𝐵𝑈))
207 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑘 = 0 )
208207oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → (𝑘 · 𝑝) = ( 0 · 𝑝))
209 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → (𝑘 · 𝑝) = 𝑡)
210100ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑅 ∈ Ring)
21177adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝𝐵)
212211ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑝𝐵)
21356, 55, 176, 210, 212ringlzd 20198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → ( 0 · 𝑝) = 0 )
214208, 209, 2133eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑡 = 0 )
215 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑡 ∈ ((𝐵𝑈) ∖ { 0 }))
216 eldifsni 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 ∈ ((𝐵𝑈) ∖ { 0 }) → 𝑡0 )
217215, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑡0 )
218217neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → ¬ 𝑡 = 0 )
219214, 218pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → ¬ 𝑘 = 0 )
220219neqned 2932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → 𝑘0 )
221220adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘0 )
222206, 221eldifsnd 4741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘 ∈ ((𝐵𝑈) ∖ { 0 }))
223222an72ds 32415 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑘 ∈ ((𝐵𝑈) ∖ { 0 }))
224 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑘 → (𝑦 · 𝑧) = (𝑦 · 𝑘))
225224eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑘 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ (𝑦 · 𝑘) = (𝑀 Σg 𝑑)))
226225rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑘 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ ∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑)))
227 eleq1w 2811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑘 → (𝑧𝑆𝑘𝑆))
228226, 227imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑘 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆)))
229228adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑧 = 𝑘) → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆)))
230223, 229rspcdv 3571 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆)))
231230imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆))
232231an82ds 32416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆))
233203, 232mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑘𝑆)
234 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑝 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 𝑓)))
235234rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑝 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓)))
236 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = ⟨“𝑝”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑝”⟩))
237236eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = ⟨“𝑝”⟩ → (𝑝 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg ⟨“𝑝”⟩)))
238 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝𝑃)
239238s1cld 14528 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → ⟨“𝑝”⟩ ∈ Word 𝑃)
24089gsumws1 18730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑝𝐵 → (𝑀 Σg ⟨“𝑝”⟩) = 𝑝)
241211, 240syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → (𝑀 Σg ⟨“𝑝”⟩) = 𝑝)
242241eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝 = (𝑀 Σg ⟨“𝑝”⟩))
243237, 239, 242rspcedvdw 3582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓))
244235, 211, 243elrabd 3652 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
245244, 173eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝𝑆)
246245ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑝𝑆)
24756, 176, 51, 74, 45, 178, 181, 173, 55, 233, 2461arithufdlem2 33492 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → (𝑘 · 𝑝) ∈ 𝑆)
248175, 247eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑡𝑆)
249174, 248pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑡𝑆)
250249r19.29an 3133 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑡) → 𝑡𝑆)
251250adantrl 716 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑡)) → 𝑡𝑆)
252153, 251sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑝(∥r𝑅)𝑡) → 𝑡𝑆)
253 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑤𝐵)
25456, 68, 55dvdsrmul 20267 . . . . . . . . . . . . . . . . . . . 20 ((𝑝𝐵 ∧ (𝑀 Σg 𝑑) ∈ 𝐵) → 𝑝(∥r𝑅)((𝑀 Σg 𝑑) · 𝑝))
25582, 105, 254syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝(∥r𝑅)((𝑀 Σg 𝑑) · 𝑝))
256255, 124breqtrrd 5123 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝(∥r𝑅)(𝑤 · 𝑡))
25756, 74, 68, 55, 84, 81, 253, 110, 256rprmdvds 33466 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑝(∥r𝑅)𝑤𝑝(∥r𝑅)𝑡))
258152, 252, 257mpjaodan 960 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝑆)
259258r19.29an 3133 . . . . . . . . . . . . . . 15 ((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ ∃𝑤𝐵 (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝑆)
26067, 259sylan2b 594 . . . . . . . . . . . . . 14 ((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝑆)
261260ex 412 . . . . . . . . . . . . 13 (((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆))
262261ralrimiva 3121 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → ∀𝑡 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆))
263140eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑧 = 𝑡 → ((𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
264263rexbidv 3153 . . . . . . . . . . . . . 14 (𝑧 = 𝑡 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
265264, 143imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆)))
266265cbvralvw 3207 . . . . . . . . . . . 12 (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆) ↔ ∀𝑡 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆))
267262, 266sylibr 234 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))
268267ex 412 . . . . . . . . . 10 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
269268anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ Word 𝑃𝑝𝑃)) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
270269expcom 413 . . . . . . . 8 ((𝑑 ∈ Word 𝑃𝑝𝑃) → (𝜑 → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))))
271270a2d 29 . . . . . . 7 ((𝑑 ∈ Word 𝑃𝑝𝑃) → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))))
27217, 23, 29, 35, 64, 271wrdind 14646 . . . . . 6 (𝑓 ∈ Word 𝑃 → (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆)))
273272impcom 407 . . . . 5 ((𝜑𝑓 ∈ Word 𝑃) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆))
274 1arithufdlem.3 . . . . . . . 8 (𝜑𝑋𝐵)
275 1arithufdlem.4 . . . . . . . 8 (𝜑 → ¬ 𝑋𝑈)
276274, 275eldifd 3916 . . . . . . 7 (𝜑𝑋 ∈ (𝐵𝑈))
277 1arithufdlem.5 . . . . . . 7 (𝜑𝑋0 )
278276, 277eldifsnd 4741 . . . . . 6 (𝜑𝑋 ∈ ((𝐵𝑈) ∖ { 0 }))
279278adantr 480 . . . . 5 ((𝜑𝑓 ∈ Word 𝑃) → 𝑋 ∈ ((𝐵𝑈) ∖ { 0 }))
28011, 273, 279rspcdva 3580 . . . 4 ((𝜑𝑓 ∈ Word 𝑃) → (∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓) → 𝑋𝑆))
281280imp 406 . . 3 (((𝜑𝑓 ∈ Word 𝑃) ∧ ∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓)) → 𝑋𝑆)
2826, 281syldan 591 . 2 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → 𝑋𝑆)
283 1arithufdlem3.1 . . . . 5 (𝜑 → (𝑌 · 𝑋) ∈ 𝑆)
284283, 173eleqtrdi 2838 . . . 4 (𝜑 → (𝑌 · 𝑋) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
285 eqeq1 2733 . . . . . 6 (𝑥 = (𝑌 · 𝑋) → (𝑥 = (𝑀 Σg 𝑓) ↔ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
286285rexbidv 3153 . . . . 5 (𝑥 = (𝑌 · 𝑋) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
287286elrab 3650 . . . 4 ((𝑌 · 𝑋) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ((𝑌 · 𝑋) ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
288284, 287sylib 218 . . 3 (𝜑 → ((𝑌 · 𝑋) ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
289288simprd 495 . 2 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓))
290282, 289r19.29a 3137 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs1 14520  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  CMndccmn 19677  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  CRingccrg 20137  rcdsr 20257  Unitcui 20258  RPrimecrpm 20335  Domncdomn 20595  IDomncidom 20596  DivRingcdr 20632  UFDcufd 33485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-rprm 20336  df-nzr 20416  df-subrg 20473  df-domn 20598  df-idom 20599  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-prmidl 33383  df-ufd 33486
This theorem is referenced by:  1arithufdlem4  33494
  Copyright terms: Public domain W3C validator