Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arithufdlem3 Structured version   Visualization version   GIF version

Theorem 1arithufdlem3 33518
Description: Lemma for 1arithufd 33520. If a product (𝑌 · 𝑋) can be written as a product of primes, with 𝑋 non-unit, nonzero, so can 𝑋. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
1arithufd.b 𝐵 = (Base‘𝑅)
1arithufd.0 0 = (0g𝑅)
1arithufd.u 𝑈 = (Unit‘𝑅)
1arithufd.p 𝑃 = (RPrime‘𝑅)
1arithufd.m 𝑀 = (mulGrp‘𝑅)
1arithufd.r (𝜑𝑅 ∈ UFD)
1arithufdlem.2 (𝜑 → ¬ 𝑅 ∈ DivRing)
1arithufdlem.s 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
1arithufdlem.3 (𝜑𝑋𝐵)
1arithufdlem.4 (𝜑 → ¬ 𝑋𝑈)
1arithufdlem.5 (𝜑𝑋0 )
1arithufdlem3.p · = (.r𝑅)
1arithufdlem3.y (𝜑𝑌𝐵)
1arithufdlem3.1 (𝜑 → (𝑌 · 𝑋) ∈ 𝑆)
Assertion
Ref Expression
1arithufdlem3 (𝜑𝑋𝑆)
Distinct variable groups:   0 ,𝑓   𝑥,𝐵   𝑓,𝑀,𝑥   𝑃,𝑓,𝑥   𝑅,𝑓   𝜑,𝑓,𝑥   𝑥,𝑋   𝑥,𝑈   𝑓,𝑌,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥, 0   𝑈,𝑓   𝐵,𝑓   𝑓,𝑋   · ,𝑓,𝑥   𝑆,𝑓

Proof of Theorem 1arithufdlem3
Dummy variables 𝑝 𝑐 𝑣 𝑘 𝑡 𝑤 𝑧 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7359 . . . . 5 (𝑦 = 𝑌 → (𝑦 · 𝑋) = (𝑌 · 𝑋))
21eqeq1d 2735 . . . 4 (𝑦 = 𝑌 → ((𝑦 · 𝑋) = (𝑀 Σg 𝑓) ↔ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
3 1arithufdlem3.y . . . . 5 (𝜑𝑌𝐵)
43ad2antrr 726 . . . 4 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → 𝑌𝐵)
5 simpr 484 . . . 4 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → (𝑌 · 𝑋) = (𝑀 Σg 𝑓))
62, 4, 5rspcedvdw 3576 . . 3 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → ∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓))
7 oveq2 7360 . . . . . . . 8 (𝑧 = 𝑋 → (𝑦 · 𝑧) = (𝑦 · 𝑋))
87eqeq1d 2735 . . . . . . 7 (𝑧 = 𝑋 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑓) ↔ (𝑦 · 𝑋) = (𝑀 Σg 𝑓)))
98rexbidv 3157 . . . . . 6 (𝑧 = 𝑋 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) ↔ ∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓)))
10 eleq1 2821 . . . . . 6 (𝑧 = 𝑋 → (𝑧𝑆𝑋𝑆))
119, 10imbi12d 344 . . . . 5 (𝑧 = 𝑋 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓) → 𝑋𝑆)))
12 oveq2 7360 . . . . . . . . . . . 12 (𝑐 = ∅ → (𝑀 Σg 𝑐) = (𝑀 Σg ∅))
1312eqeq2d 2744 . . . . . . . . . . 11 (𝑐 = ∅ → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg ∅)))
1413rexbidv 3157 . . . . . . . . . 10 (𝑐 = ∅ → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅)))
1514imbi1d 341 . . . . . . . . 9 (𝑐 = ∅ → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆)))
1615ralbidv 3156 . . . . . . . 8 (𝑐 = ∅ → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆)))
1716imbi2d 340 . . . . . . 7 (𝑐 = ∅ → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆))))
18 oveq2 7360 . . . . . . . . . . . 12 (𝑐 = 𝑑 → (𝑀 Σg 𝑐) = (𝑀 Σg 𝑑))
1918eqeq2d 2744 . . . . . . . . . . 11 (𝑐 = 𝑑 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg 𝑑)))
2019rexbidv 3157 . . . . . . . . . 10 (𝑐 = 𝑑 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑)))
2120imbi1d 341 . . . . . . . . 9 (𝑐 = 𝑑 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)))
2221ralbidv 3156 . . . . . . . 8 (𝑐 = 𝑑 → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)))
2322imbi2d 340 . . . . . . 7 (𝑐 = 𝑑 → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆))))
24 oveq2 7360 . . . . . . . . . . . 12 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → (𝑀 Σg 𝑐) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)))
2524eqeq2d 2744 . . . . . . . . . . 11 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
2625rexbidv 3157 . . . . . . . . . 10 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
2726imbi1d 341 . . . . . . . . 9 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
2827ralbidv 3156 . . . . . . . 8 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
2928imbi2d 340 . . . . . . 7 (𝑐 = (𝑑 ++ ⟨“𝑝”⟩) → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))))
30 oveq2 7360 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑀 Σg 𝑐) = (𝑀 Σg 𝑓))
3130eqeq2d 2744 . . . . . . . . . . 11 (𝑐 = 𝑓 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ (𝑦 · 𝑧) = (𝑀 Σg 𝑓)))
3231rexbidv 3157 . . . . . . . . . 10 (𝑐 = 𝑓 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) ↔ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓)))
3332imbi1d 341 . . . . . . . . 9 (𝑐 = 𝑓 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆)))
3433ralbidv 3156 . . . . . . . 8 (𝑐 = 𝑓 → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆) ↔ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆)))
3534imbi2d 340 . . . . . . 7 (𝑐 = 𝑓 → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑐) → 𝑧𝑆)) ↔ (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆))))
36 1arithufd.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ UFD)
3736ufdidom 33514 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ IDomn)
3837idomcringd 20644 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ CRing)
3938ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑅 ∈ CRing)
40 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑦𝐵)
41 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧 ∈ ((𝐵𝑈) ∖ { 0 }))
4241eldifad 3910 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧 ∈ (𝐵𝑈))
4342eldifad 3910 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧𝐵)
44 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (𝑦 · 𝑧) = (𝑀 Σg ∅))
45 1arithufd.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
46 eqid 2733 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
4745, 46ringidval 20103 . . . . . . . . . . . . . . 15 (1r𝑅) = (0g𝑀)
4847gsum0 18594 . . . . . . . . . . . . . 14 (𝑀 Σg ∅) = (1r𝑅)
4944, 48eqtrdi 2784 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (𝑦 · 𝑧) = (1r𝑅))
5039crngringd 20166 . . . . . . . . . . . . . 14 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑅 ∈ Ring)
51 1arithufd.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑅)
5251, 461unit 20294 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝑈)
5350, 52syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (1r𝑅) ∈ 𝑈)
5449, 53eqeltrd 2833 . . . . . . . . . . . 12 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → (𝑦 · 𝑧) ∈ 𝑈)
55 1arithufdlem3.p . . . . . . . . . . . . . 14 · = (.r𝑅)
56 1arithufd.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑅)
5751, 55, 56unitmulclb 20301 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑦𝐵𝑧𝐵) → ((𝑦 · 𝑧) ∈ 𝑈 ↔ (𝑦𝑈𝑧𝑈)))
5857simplbda 499 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑦𝐵𝑧𝐵) ∧ (𝑦 · 𝑧) ∈ 𝑈) → 𝑧𝑈)
5939, 40, 43, 54, 58syl31anc 1375 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → 𝑧𝑈)
6042eldifbd 3911 . . . . . . . . . . 11 (((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) ∧ ¬ 𝑧𝑆) → ¬ 𝑧𝑈)
6159, 60condan 817 . . . . . . . . . 10 ((((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑧) = (𝑀 Σg ∅)) → 𝑧𝑆)
6261r19.29an 3137 . . . . . . . . 9 (((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ ∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅)) → 𝑧𝑆)
6362ex 412 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝐵𝑈) ∖ { 0 })) → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆))
6463ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg ∅) → 𝑧𝑆))
65 oveq1 7359 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑤 → (𝑦 · 𝑡) = (𝑤 · 𝑡))
6665eqeq1d 2735 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → ((𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
6766cbvrexvw 3212 . . . . . . . . . . . . . . 15 (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ ∃𝑤𝐵 (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)))
68 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (∥r𝑅) = (∥r𝑅)
6956, 68, 55dvdsr 20282 . . . . . . . . . . . . . . . . . 18 (𝑝(∥r𝑅)𝑤 ↔ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑤))
70 oveq1 7359 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑘 → (𝑣 · 𝑡) = (𝑘 · 𝑡))
7170eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝑘 → ((𝑣 · 𝑡) = (𝑀 Σg 𝑑) ↔ (𝑘 · 𝑡) = (𝑀 Σg 𝑑)))
72 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑘𝐵)
73 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0g𝑅) = (0g𝑅)
74 1arithufd.p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑃 = (RPrime‘𝑅)
7536adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑝𝑃) → 𝑅 ∈ UFD)
76 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑝𝑃) → 𝑝𝑃)
7756, 74, 75, 76rprmcl 33490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑝𝑃) → 𝑝𝐵)
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝑝𝑃𝑝𝐵))
7978ssrdv 3936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑃𝐵)
8079ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑃𝐵)
81 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝𝑃)
8280, 81sseldd 3931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝𝐵)
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝𝐵)
8436ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑅 ∈ UFD)
8584ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ UFD)
8681ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝𝑃)
8774, 73, 85, 86rprmnz 33492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝 ≠ (0g𝑅))
8883, 87eldifsnd 4738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑝 ∈ (𝐵 ∖ {(0g𝑅)}))
8945, 56mgpbas 20065 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐵 = (Base‘𝑀)
9045crngmgp 20161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
9138, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑀 ∈ CMnd)
9291ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑀 ∈ CMnd)
93 ovexd 7387 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (0..^(♯‘𝑑)) ∈ V)
94 eqidd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (♯‘𝑑) = (♯‘𝑑))
95 sswrd 14431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵)
9679, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → Word 𝑃 ⊆ Word 𝐵)
9796sselda 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑑 ∈ Word 𝑃) → 𝑑 ∈ Word 𝐵)
9897ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑 ∈ Word 𝐵)
9994, 98wrdfd 14428 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑:(0..^(♯‘𝑑))⟶𝐵)
10038crngringd 20166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑅 ∈ Ring)
101100, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (1r𝑅) ∈ 𝑈)
102101ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (1r𝑅) ∈ 𝑈)
103 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑 ∈ Word 𝑃)
104102, 103wrdfsupp 32925 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑑 finSupp (1r𝑅))
10589, 47, 92, 93, 99, 104gsumcl 19829 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑀 Σg 𝑑) ∈ 𝐵)
106105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑀 Σg 𝑑) ∈ 𝐵)
107100ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ Ring)
108 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡 ∈ ((𝐵𝑈) ∖ { 0 }))
109108eldifad 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡 ∈ (𝐵𝑈))
110109eldifad 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝐵)
111110ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑡𝐵)
11256, 55, 107, 72, 111ringcld 20180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · 𝑡) ∈ 𝐵)
11337idomdomd 20643 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑅 ∈ Domn)
114113ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ Domn)
11538ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑅 ∈ CRing)
11656, 55, 115, 83, 106crngcomd 20175 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑝 · (𝑀 Σg 𝑑)) = ((𝑀 Σg 𝑑) · 𝑝))
117 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)))
11845ringmgp 20159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
119100, 118syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑀 ∈ Mnd)
120119ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑀 ∈ Mnd)
12145, 55mgpplusg 20064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 · = (+g𝑀)
12289, 121gsumccatsn 18753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ Mnd ∧ 𝑑 ∈ Word 𝐵𝑝𝐵) → (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑑) · 𝑝))
123120, 98, 82, 122syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) = ((𝑀 Σg 𝑑) · 𝑝))
124117, 123eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑤 · 𝑡) = ((𝑀 Σg 𝑑) · 𝑝))
125124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑤 · 𝑡) = ((𝑀 Σg 𝑑) · 𝑝))
12656, 55, 107, 72, 83, 111ringassd 20177 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ((𝑘 · 𝑝) · 𝑡) = (𝑘 · (𝑝 · 𝑡)))
127 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · 𝑝) = 𝑤)
128127oveq1d 7367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ((𝑘 · 𝑝) · 𝑡) = (𝑤 · 𝑡))
12956, 55, 115, 72, 83, 111crng12d 20178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · (𝑝 · 𝑡)) = (𝑝 · (𝑘 · 𝑡)))
130126, 128, 1293eqtr3d 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑤 · 𝑡) = (𝑝 · (𝑘 · 𝑡)))
131116, 125, 1303eqtr2d 2774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑝 · (𝑀 Σg 𝑑)) = (𝑝 · (𝑘 · 𝑡)))
13256, 73, 55, 88, 106, 112, 114, 131domnlcan 20638 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑀 Σg 𝑑) = (𝑘 · 𝑡))
133132eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (𝑘 · 𝑡) = (𝑀 Σg 𝑑))
13471, 72, 133rspcedvdw 3576 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ∃𝑣𝐵 (𝑣 · 𝑡) = (𝑀 Σg 𝑑))
135 oveq1 7359 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → (𝑦 · 𝑡) = (𝑣 · 𝑡))
136135eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑣 → ((𝑦 · 𝑡) = (𝑀 Σg 𝑑) ↔ (𝑣 · 𝑡) = (𝑀 Σg 𝑑)))
137136cbvrexvw 3212 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) ↔ ∃𝑣𝐵 (𝑣 · 𝑡) = (𝑀 Σg 𝑑))
138134, 137sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑))
139 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → 𝑡 ∈ ((𝐵𝑈) ∖ { 0 }))
140 oveq2 7360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑡 → (𝑦 · 𝑧) = (𝑦 · 𝑡))
141140eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑡 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ (𝑦 · 𝑡) = (𝑀 Σg 𝑑)))
142141rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑡 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑)))
143 eleq1w 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑡 → (𝑧𝑆𝑡𝑆))
144142, 143imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑡 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆)))
145144adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑧 = 𝑡) → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆)))
146139, 145rspcdv 3565 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆)))
147146imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑤) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆))
148147an72ds 32434 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg 𝑑) → 𝑡𝑆))
149138, 148mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑤) → 𝑡𝑆)
150149r19.29an 3137 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑤) → 𝑡𝑆)
151150adantrl 716 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑤)) → 𝑡𝑆)
15269, 151sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑝(∥r𝑅)𝑤) → 𝑡𝑆)
15356, 68, 55dvdsr 20282 . . . . . . . . . . . . . . . . . 18 (𝑝(∥r𝑅)𝑡 ↔ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑡))
154 eqeq1 2737 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑡 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑡 = (𝑀 Σg 𝑓)))
155154rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑡 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑡 = (𝑀 Σg 𝑓)))
156110ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡𝐵)
157 oveq2 7360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ⟨“𝑡”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑡”⟩))
158157eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ⟨“𝑡”⟩ → (𝑡 = (𝑀 Σg 𝑓) ↔ 𝑡 = (𝑀 Σg ⟨“𝑡”⟩)))
159 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → (𝑘 · 𝑝) = 𝑡)
16037ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑅 ∈ IDomn)
161160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑅 ∈ IDomn)
162 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑘𝑈)
16381ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝𝑃)
164163adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑝𝑃)
16574, 51, 55, 161, 162, 164unitmulrprm 33500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → (𝑘 · 𝑝) ∈ 𝑃)
166159, 165eqeltrrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡𝑃)
167166s1cld 14513 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → ⟨“𝑡”⟩ ∈ Word 𝑃)
16889gsumws1 18748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝐵 → (𝑀 Σg ⟨“𝑡”⟩) = 𝑡)
169156, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → (𝑀 Σg ⟨“𝑡”⟩) = 𝑡)
170169eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡 = (𝑀 Σg ⟨“𝑡”⟩))
171158, 167, 170rspcedvdw 3576 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → ∃𝑓 ∈ Word 𝑃𝑡 = (𝑀 Σg 𝑓))
172155, 156, 171elrabd 3645 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
173 1arithufdlem.s . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)}
174172, 173eleqtrrdi 2844 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑘𝑈) → 𝑡𝑆)
175 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → (𝑘 · 𝑝) = 𝑡)
176 1arithufd.0 . . . . . . . . . . . . . . . . . . . . . . 23 0 = (0g𝑅)
17784ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑅 ∈ UFD)
178177adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑅 ∈ UFD)
179 1arithufdlem.2 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ¬ 𝑅 ∈ DivRing)
180179ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ¬ 𝑅 ∈ DivRing)
181180adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → ¬ 𝑅 ∈ DivRing)
182 oveq1 7359 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = 𝑤 → (𝑣 · 𝑘) = (𝑤 · 𝑘))
183182eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = 𝑤 → ((𝑣 · 𝑘) = (𝑀 Σg 𝑑) ↔ (𝑤 · 𝑘) = (𝑀 Σg 𝑑)))
184 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑤𝐵)
185100ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑅 ∈ Ring)
186 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑘𝐵)
18756, 55, 185, 184, 186ringcld 20180 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · 𝑘) ∈ 𝐵)
188105ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑀 Σg 𝑑) ∈ 𝐵)
18982ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝𝐵)
19074, 176, 177, 163rprmnz 33492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝0 )
191189, 190eldifsnd 4738 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑝 ∈ (𝐵 ∖ { 0 }))
19256, 55, 185, 184, 186, 189ringassd 20177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ((𝑤 · 𝑘) · 𝑝) = (𝑤 · (𝑘 · 𝑝)))
193 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑘 · 𝑝) = 𝑡)
194193oveq2d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · (𝑘 · 𝑝)) = (𝑤 · 𝑡))
195124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · 𝑡) = ((𝑀 Σg 𝑑) · 𝑝))
196192, 194, 1953eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ((𝑤 · 𝑘) · 𝑝) = ((𝑀 Σg 𝑑) · 𝑝))
19756, 176, 55, 187, 188, 191, 160, 196idomrcan 33252 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (𝑤 · 𝑘) = (𝑀 Σg 𝑑))
198183, 184, 197rspcedvdw 3576 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ∃𝑣𝐵 (𝑣 · 𝑘) = (𝑀 Σg 𝑑))
199 oveq1 7359 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑣 → (𝑦 · 𝑘) = (𝑣 · 𝑘))
200199eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑣 → ((𝑦 · 𝑘) = (𝑀 Σg 𝑑) ↔ (𝑣 · 𝑘) = (𝑀 Σg 𝑑)))
201200cbvrexvw 3212 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) ↔ ∃𝑣𝐵 (𝑣 · 𝑘) = (𝑀 Σg 𝑑))
202198, 201sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → ∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑))
203202adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → ∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑))
204 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘𝐵)
205 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → ¬ 𝑘𝑈)
206204, 205eldifd 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘 ∈ (𝐵𝑈))
207 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑘 = 0 )
208207oveq1d 7367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → (𝑘 · 𝑝) = ( 0 · 𝑝))
209 simp-6r 787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → (𝑘 · 𝑝) = 𝑡)
210100ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑅 ∈ Ring)
21177adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝𝐵)
212211ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑝𝐵)
21356, 55, 176, 210, 212ringlzd 20215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → ( 0 · 𝑝) = 0 )
214208, 209, 2133eqtr3d 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑡 = 0 )
215 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑡 ∈ ((𝐵𝑈) ∖ { 0 }))
216 eldifsni 4741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑡 ∈ ((𝐵𝑈) ∖ { 0 }) → 𝑡0 )
217215, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → 𝑡0 )
218217neneqd 2934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ 𝑘 = 0 ) → ¬ 𝑡 = 0 )
219214, 218pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → ¬ 𝑘 = 0 )
220219neqned 2936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) → 𝑘0 )
221220adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘0 )
222206, 221eldifsnd 4738 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ ¬ 𝑘𝑈) → 𝑘 ∈ ((𝐵𝑈) ∖ { 0 }))
223222an72ds 32434 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑘 ∈ ((𝐵𝑈) ∖ { 0 }))
224 oveq2 7360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑘 → (𝑦 · 𝑧) = (𝑦 · 𝑘))
225224eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑘 → ((𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ (𝑦 · 𝑘) = (𝑀 Σg 𝑑)))
226225rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑘 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) ↔ ∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑)))
227 eleq1w 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑘 → (𝑧𝑆𝑘𝑆))
228226, 227imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑘 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆)))
229228adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ 𝑧 = 𝑘) → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆)))
230223, 229rspcdv 3565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆)))
231230imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ¬ 𝑘𝑈) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆))
232231an82ds 32435 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → (∃𝑦𝐵 (𝑦 · 𝑘) = (𝑀 Σg 𝑑) → 𝑘𝑆))
233203, 232mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑘𝑆)
234 eqeq1 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑝 → (𝑥 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg 𝑓)))
235234rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑝 → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓)))
236 oveq2 7360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = ⟨“𝑝”⟩ → (𝑀 Σg 𝑓) = (𝑀 Σg ⟨“𝑝”⟩))
237236eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = ⟨“𝑝”⟩ → (𝑝 = (𝑀 Σg 𝑓) ↔ 𝑝 = (𝑀 Σg ⟨“𝑝”⟩)))
238 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝𝑃)
239238s1cld 14513 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → ⟨“𝑝”⟩ ∈ Word 𝑃)
24089gsumws1 18748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑝𝐵 → (𝑀 Σg ⟨“𝑝”⟩) = 𝑝)
241211, 240syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → (𝑀 Σg ⟨“𝑝”⟩) = 𝑝)
242241eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝 = (𝑀 Σg ⟨“𝑝”⟩))
243237, 239, 242rspcedvdw 3576 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → ∃𝑓 ∈ Word 𝑃𝑝 = (𝑀 Σg 𝑓))
244235, 211, 243elrabd 3645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝 ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
245244, 173eleqtrrdi 2844 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → 𝑝𝑆)
246245ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑝𝑆)
24756, 176, 51, 74, 45, 178, 181, 173, 55, 233, 2461arithufdlem2 33517 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → (𝑘 · 𝑝) ∈ 𝑆)
248175, 247eqeltrrd 2834 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) ∧ ¬ 𝑘𝑈) → 𝑡𝑆)
249174, 248pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑘𝐵) ∧ (𝑘 · 𝑝) = 𝑡) → 𝑡𝑆)
250249r19.29an 3137 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑡) → 𝑡𝑆)
251250adantrl 716 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ (𝑝𝐵 ∧ ∃𝑘𝐵 (𝑘 · 𝑝) = 𝑡)) → 𝑡𝑆)
252153, 251sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) ∧ 𝑝(∥r𝑅)𝑡) → 𝑡𝑆)
253 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑤𝐵)
25456, 68, 55dvdsrmul 20284 . . . . . . . . . . . . . . . . . . . 20 ((𝑝𝐵 ∧ (𝑀 Σg 𝑑) ∈ 𝐵) → 𝑝(∥r𝑅)((𝑀 Σg 𝑑) · 𝑝))
25582, 105, 254syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝(∥r𝑅)((𝑀 Σg 𝑑) · 𝑝))
256255, 124breqtrrd 5121 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑝(∥r𝑅)(𝑤 · 𝑡))
25756, 74, 68, 55, 84, 81, 253, 110, 256rprmdvds 33491 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → (𝑝(∥r𝑅)𝑤𝑝(∥r𝑅)𝑡))
258152, 252, 257mpjaodan 960 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ 𝑤𝐵) ∧ (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝑆)
259258r19.29an 3137 . . . . . . . . . . . . . . 15 ((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ ∃𝑤𝐵 (𝑤 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝑆)
26067, 259sylan2b 594 . . . . . . . . . . . . . 14 ((((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) ∧ ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))) → 𝑡𝑆)
261260ex 412 . . . . . . . . . . . . 13 (((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) ∧ 𝑡 ∈ ((𝐵𝑈) ∖ { 0 })) → (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆))
262261ralrimiva 3125 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → ∀𝑡 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆))
263140eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑧 = 𝑡 → ((𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
264263rexbidv 3157 . . . . . . . . . . . . . 14 (𝑧 = 𝑡 → (∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) ↔ ∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩))))
265264, 143imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → ((∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆) ↔ (∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆)))
266265cbvralvw 3211 . . . . . . . . . . . 12 (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆) ↔ ∀𝑡 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑡) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑡𝑆))
267262, 266sylibr 234 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) ∧ ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))
268267ex 412 . . . . . . . . . 10 (((𝜑𝑑 ∈ Word 𝑃) ∧ 𝑝𝑃) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
269268anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ Word 𝑃𝑝𝑃)) → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆)))
270269expcom 413 . . . . . . . 8 ((𝑑 ∈ Word 𝑃𝑝𝑃) → (𝜑 → (∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))))
271270a2d 29 . . . . . . 7 ((𝑑 ∈ Word 𝑃𝑝𝑃) → ((𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑑) → 𝑧𝑆)) → (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg (𝑑 ++ ⟨“𝑝”⟩)) → 𝑧𝑆))))
27217, 23, 29, 35, 64, 271wrdind 14631 . . . . . 6 (𝑓 ∈ Word 𝑃 → (𝜑 → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆)))
273272impcom 407 . . . . 5 ((𝜑𝑓 ∈ Word 𝑃) → ∀𝑧 ∈ ((𝐵𝑈) ∖ { 0 })(∃𝑦𝐵 (𝑦 · 𝑧) = (𝑀 Σg 𝑓) → 𝑧𝑆))
274 1arithufdlem.3 . . . . . . . 8 (𝜑𝑋𝐵)
275 1arithufdlem.4 . . . . . . . 8 (𝜑 → ¬ 𝑋𝑈)
276274, 275eldifd 3909 . . . . . . 7 (𝜑𝑋 ∈ (𝐵𝑈))
277 1arithufdlem.5 . . . . . . 7 (𝜑𝑋0 )
278276, 277eldifsnd 4738 . . . . . 6 (𝜑𝑋 ∈ ((𝐵𝑈) ∖ { 0 }))
279278adantr 480 . . . . 5 ((𝜑𝑓 ∈ Word 𝑃) → 𝑋 ∈ ((𝐵𝑈) ∖ { 0 }))
28011, 273, 279rspcdva 3574 . . . 4 ((𝜑𝑓 ∈ Word 𝑃) → (∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓) → 𝑋𝑆))
281280imp 406 . . 3 (((𝜑𝑓 ∈ Word 𝑃) ∧ ∃𝑦𝐵 (𝑦 · 𝑋) = (𝑀 Σg 𝑓)) → 𝑋𝑆)
2826, 281syldan 591 . 2 (((𝜑𝑓 ∈ Word 𝑃) ∧ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)) → 𝑋𝑆)
283 1arithufdlem3.1 . . . . 5 (𝜑 → (𝑌 · 𝑋) ∈ 𝑆)
284283, 173eleqtrdi 2843 . . . 4 (𝜑 → (𝑌 · 𝑋) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)})
285 eqeq1 2737 . . . . . 6 (𝑥 = (𝑌 · 𝑋) → (𝑥 = (𝑀 Σg 𝑓) ↔ (𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
286285rexbidv 3157 . . . . 5 (𝑥 = (𝑌 · 𝑋) → (∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓) ↔ ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
287286elrab 3643 . . . 4 ((𝑌 · 𝑋) ∈ {𝑥𝐵 ∣ ∃𝑓 ∈ Word 𝑃𝑥 = (𝑀 Σg 𝑓)} ↔ ((𝑌 · 𝑋) ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
288284, 287sylib 218 . . 3 (𝜑 → ((𝑌 · 𝑋) ∈ 𝐵 ∧ ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓)))
289288simprd 495 . 2 (𝜑 → ∃𝑓 ∈ Word 𝑃(𝑌 · 𝑋) = (𝑀 Σg 𝑓))
290282, 289r19.29a 3141 1 (𝜑𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  0cc0 11013  ..^cfzo 13556  chash 14239  Word cword 14422   ++ cconcat 14479  ⟨“cs1 14505  Basecbs 17122  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644  CMndccmn 19694  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153  CRingccrg 20154  rcdsr 20274  Unitcui 20275  RPrimecrpm 20352  Domncdomn 20609  IDomncidom 20610  DivRingcdr 20646  UFDcufd 33510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-word 14423  df-lsw 14472  df-concat 14480  df-s1 14506  df-substr 14551  df-pfx 14581  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-rprm 20353  df-nzr 20430  df-subrg 20487  df-domn 20612  df-idom 20613  df-lmod 20797  df-lss 20867  df-lsp 20907  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-rsp 21148  df-prmidl 33408  df-ufd 33511
This theorem is referenced by:  1arithufdlem4  33519
  Copyright terms: Public domain W3C validator