![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > an82ds | Structured version Visualization version GIF version |
Description: Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
an82ds.1 | ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜌) |
Ref | Expression |
---|---|
an82ds | ⊢ ((((((((𝜑 ∧ 𝜎) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜓) → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 644 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜎) ↔ ((𝜑 ∧ 𝜎) ∧ 𝜓)) | |
2 | 1 | anbi1i 622 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜎) ∧ 𝜃) ↔ (((𝜑 ∧ 𝜎) ∧ 𝜓) ∧ 𝜃)) |
3 | 2 | anbi1i 622 | . . . . 5 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜎) ∧ 𝜃) ∧ 𝜏) ↔ ((((𝜑 ∧ 𝜎) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏)) |
4 | 3 | anbi1i 622 | . . . 4 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜎) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ↔ (((((𝜑 ∧ 𝜎) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂)) |
5 | 4 | anbi1i 622 | . . 3 ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜎) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ↔ ((((((𝜑 ∧ 𝜎) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁)) |
6 | an82ds.1 | . . . 4 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜌) | |
7 | 6 | an72ds 32332 | . . 3 ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜎) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜒) → 𝜌) |
8 | 5, 7 | sylanbr 580 | . 2 ⊢ ((((((((𝜑 ∧ 𝜎) ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜒) → 𝜌) |
9 | 8 | an72ds 32332 | 1 ⊢ ((((((((𝜑 ∧ 𝜎) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜓) → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: 1arithufdlem3 33361 |
Copyright terms: Public domain | W3C validator |