Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  syl22anbrc Structured version   Visualization version   GIF version

Theorem syl22anbrc 32474
Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
syl22anbrc.1 (𝜑𝜓)
syl22anbrc.2 (𝜑𝜒)
syl22anbrc.3 (𝜑𝜃)
syl22anbrc.4 (𝜑𝜏)
syl22anbrc.5 (𝜂 ↔ ((𝜓𝜒) ∧ (𝜃𝜏)))
Assertion
Ref Expression
syl22anbrc (𝜑𝜂)

Proof of Theorem syl22anbrc
StepHypRef Expression
1 syl22anbrc.1 . 2 (𝜑𝜓)
2 syl22anbrc.2 . 2 (𝜑𝜒)
3 syl22anbrc.3 . . 3 (𝜑𝜃)
4 syl22anbrc.4 . . 3 (𝜑𝜏)
53, 4jca 511 . 2 (𝜑 → (𝜃𝜏))
6 syl22anbrc.5 . 2 (𝜂 ↔ ((𝜓𝜒) ∧ (𝜃𝜏)))
71, 2, 5, 6syl21anbrc 1345 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fldextrspundgdvdslem  33730  fldextrspundgdvds  33731
  Copyright terms: Public domain W3C validator