| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > syl22anbrc | Structured version Visualization version GIF version | ||
| Description: Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| syl22anbrc.1 | ⊢ (𝜑 → 𝜓) |
| syl22anbrc.2 | ⊢ (𝜑 → 𝜒) |
| syl22anbrc.3 | ⊢ (𝜑 → 𝜃) |
| syl22anbrc.4 | ⊢ (𝜑 → 𝜏) |
| syl22anbrc.5 | ⊢ (𝜂 ↔ ((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏))) |
| Ref | Expression |
|---|---|
| syl22anbrc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl22anbrc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl22anbrc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl22anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | syl22anbrc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl22anbrc.5 | . 2 ⊢ (𝜂 ↔ ((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏))) | |
| 7 | 1, 2, 5, 6 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fldextrspundgdvdslem 33730 fldextrspundgdvds 33731 |
| Copyright terms: Public domain | W3C validator |