MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi6 Structured version   Visualization version   GIF version

Theorem anabsi6 667
Description: Absorption of antecedent into conjunction. (Contributed by NM, 14-Aug-2000.)
Hypothesis
Ref Expression
anabsi6.1 (𝜑 → ((𝜓𝜑) → 𝜒))
Assertion
Ref Expression
anabsi6 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi6
StepHypRef Expression
1 anabsi6.1 . . 3 (𝜑 → ((𝜓𝜑) → 𝜒))
21ancomsd 466 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
32anabsi5 666 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  anabsi7  668  pjnormssi  30530  funressndmafv2rn  44715
  Copyright terms: Public domain W3C validator