Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressndmafv2rn Structured version   Visualization version   GIF version

Theorem funressndmafv2rn 44196
Description: The alternate function value at a class 𝐴 is defined, i.e., in the range of the function if the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressndmafv2rn (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem funressndmafv2rn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatafv2iota 44183 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
2 df-dfat 44092 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
3 sneq 4535 . . . . . . . . 9 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43reseq2d 5828 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴}))
54funeqd 6362 . . . . . . 7 (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴})))
6 eleq1 2839 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹𝐴 ∈ dom 𝐹))
75, 6anbi12d 633 . . . . . 6 (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹)))
8 breq1 5039 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
98iotabidv 6324 . . . . . . 7 (𝑥 = 𝐴 → (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝐴𝐹𝑦))
109eleq1d 2836 . . . . . 6 (𝑥 = 𝐴 → ((℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹 ↔ (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹))
117, 10imbi12d 348 . . . . 5 (𝑥 = 𝐴 → (((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹) ↔ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)))
12 eqid 2758 . . . . . . . . 9 (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦)
13 iotaex 6320 . . . . . . . . . 10 (℩𝑦𝑥𝐹𝑦) ∈ V
14 eqeq2 2770 . . . . . . . . . . . 12 (𝑧 = (℩𝑦𝑥𝐹𝑦) → ((℩𝑦𝑥𝐹𝑦) = 𝑧 ↔ (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦)))
15 breq2 5040 . . . . . . . . . . . 12 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (𝑥𝐹𝑧𝑥𝐹(℩𝑦𝑥𝐹𝑦)))
1614, 15bibi12d 349 . . . . . . . . . . 11 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧) ↔ ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦))))
1716imbi2d 344 . . . . . . . . . 10 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧)) ↔ ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦)))))
18 eldmg 5744 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐹 → (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧))
1918ibi 270 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → ∃𝑧 𝑥𝐹𝑧)
2019adantl 485 . . . . . . . . . . . 12 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃𝑧 𝑥𝐹𝑧)
21 funressnvmo 44038 . . . . . . . . . . . . . 14 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑧 𝑥𝐹𝑧)
2221adantr 484 . . . . . . . . . . . . 13 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃*𝑧 𝑥𝐹𝑧)
23 moeu 2602 . . . . . . . . . . . . 13 (∃*𝑧 𝑥𝐹𝑧 ↔ (∃𝑧 𝑥𝐹𝑧 → ∃!𝑧 𝑥𝐹𝑧))
2422, 23sylib 221 . . . . . . . . . . . 12 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (∃𝑧 𝑥𝐹𝑧 → ∃!𝑧 𝑥𝐹𝑧))
2520, 24mpd 15 . . . . . . . . . . 11 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑧 𝑥𝐹𝑧)
26 iota1 6317 . . . . . . . . . . . 12 (∃!𝑧 𝑥𝐹𝑧 → (𝑥𝐹𝑧 ↔ (℩𝑧𝑥𝐹𝑧) = 𝑧))
27 breq2 5040 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑥𝐹𝑧𝑥𝐹𝑦))
2827cbviotavw 6307 . . . . . . . . . . . . 13 (℩𝑧𝑥𝐹𝑧) = (℩𝑦𝑥𝐹𝑦)
2928eqeq1i 2763 . . . . . . . . . . . 12 ((℩𝑧𝑥𝐹𝑧) = 𝑧 ↔ (℩𝑦𝑥𝐹𝑦) = 𝑧)
3026, 29bitr2di 291 . . . . . . . . . . 11 (∃!𝑧 𝑥𝐹𝑧 → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧))
3125, 30syl 17 . . . . . . . . . 10 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧))
3213, 17, 31vtocl 3479 . . . . . . . . 9 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦)))
3312, 32mpbii 236 . . . . . . . 8 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → 𝑥𝐹(℩𝑦𝑥𝐹𝑦))
34 df-br 5037 . . . . . . . 8 (𝑥𝐹(℩𝑦𝑥𝐹𝑦) ↔ ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
3533, 34sylib 221 . . . . . . 7 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
36 vex 3413 . . . . . . . 8 𝑥 ∈ V
37 opeq1 4764 . . . . . . . . 9 (𝑧 = 𝑥 → ⟨𝑧, (℩𝑦𝑥𝐹𝑦)⟩ = ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩)
3837eleq1d 2836 . . . . . . . 8 (𝑧 = 𝑥 → (⟨𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹 ↔ ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹))
3936, 38spcev 3527 . . . . . . 7 (⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹 → ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4035, 39syl 17 . . . . . 6 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4113elrn2 5738 . . . . . 6 ((℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹 ↔ ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4240, 41sylibr 237 . . . . 5 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹)
4311, 42vtoclg 3487 . . . 4 (𝐴 ∈ dom 𝐹 → ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹))
4443anabsi6 669 . . 3 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)
452, 44sylbi 220 . 2 (𝐹 defAt 𝐴 → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)
461, 45eqeltrd 2852 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2555  ∃!weu 2587  {csn 4525  cop 4531   class class class wbr 5036  dom cdm 5528  ran crn 5529  cres 5530  cio 6297  Fun wfun 6334   defAt wdfat 44089  ''''cafv2 44181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-iota 6299  df-fun 6342  df-dfat 44092  df-afv2 44182
This theorem is referenced by:  afv2ndefb  44197  dfatafv2rnb  44200
  Copyright terms: Public domain W3C validator