Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressndmafv2rn Structured version   Visualization version   GIF version

Theorem funressndmafv2rn 43779
Description: The alternate function value at a class 𝐴 is defined, i.e., in the range of the function if the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressndmafv2rn (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem funressndmafv2rn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatafv2iota 43766 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
2 df-dfat 43675 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
3 sneq 4535 . . . . . . . . 9 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43reseq2d 5818 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴}))
54funeqd 6346 . . . . . . 7 (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴})))
6 eleq1 2877 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹𝐴 ∈ dom 𝐹))
75, 6anbi12d 633 . . . . . 6 (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹)))
8 breq1 5033 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
98iotabidv 6308 . . . . . . 7 (𝑥 = 𝐴 → (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝐴𝐹𝑦))
109eleq1d 2874 . . . . . 6 (𝑥 = 𝐴 → ((℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹 ↔ (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹))
117, 10imbi12d 348 . . . . 5 (𝑥 = 𝐴 → (((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹) ↔ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)))
12 eqid 2798 . . . . . . . . 9 (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦)
13 iotaex 6304 . . . . . . . . . 10 (℩𝑦𝑥𝐹𝑦) ∈ V
14 eqeq2 2810 . . . . . . . . . . . 12 (𝑧 = (℩𝑦𝑥𝐹𝑦) → ((℩𝑦𝑥𝐹𝑦) = 𝑧 ↔ (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦)))
15 breq2 5034 . . . . . . . . . . . 12 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (𝑥𝐹𝑧𝑥𝐹(℩𝑦𝑥𝐹𝑦)))
1614, 15bibi12d 349 . . . . . . . . . . 11 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧) ↔ ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦))))
1716imbi2d 344 . . . . . . . . . 10 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧)) ↔ ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦)))))
18 eldmg 5731 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐹 → (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧))
1918ibi 270 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → ∃𝑧 𝑥𝐹𝑧)
2019adantl 485 . . . . . . . . . . . 12 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃𝑧 𝑥𝐹𝑧)
21 funressnvmo 43637 . . . . . . . . . . . . . 14 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑧 𝑥𝐹𝑧)
2221adantr 484 . . . . . . . . . . . . 13 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃*𝑧 𝑥𝐹𝑧)
23 moeu 2643 . . . . . . . . . . . . 13 (∃*𝑧 𝑥𝐹𝑧 ↔ (∃𝑧 𝑥𝐹𝑧 → ∃!𝑧 𝑥𝐹𝑧))
2422, 23sylib 221 . . . . . . . . . . . 12 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (∃𝑧 𝑥𝐹𝑧 → ∃!𝑧 𝑥𝐹𝑧))
2520, 24mpd 15 . . . . . . . . . . 11 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑧 𝑥𝐹𝑧)
26 iota1 6301 . . . . . . . . . . . 12 (∃!𝑧 𝑥𝐹𝑧 → (𝑥𝐹𝑧 ↔ (℩𝑧𝑥𝐹𝑧) = 𝑧))
27 breq2 5034 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑥𝐹𝑧𝑥𝐹𝑦))
2827cbviotavw 6291 . . . . . . . . . . . . 13 (℩𝑧𝑥𝐹𝑧) = (℩𝑦𝑥𝐹𝑦)
2928eqeq1i 2803 . . . . . . . . . . . 12 ((℩𝑧𝑥𝐹𝑧) = 𝑧 ↔ (℩𝑦𝑥𝐹𝑦) = 𝑧)
3026, 29syl6rbb 291 . . . . . . . . . . 11 (∃!𝑧 𝑥𝐹𝑧 → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧))
3125, 30syl 17 . . . . . . . . . 10 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧))
3213, 17, 31vtocl 3507 . . . . . . . . 9 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦)))
3312, 32mpbii 236 . . . . . . . 8 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → 𝑥𝐹(℩𝑦𝑥𝐹𝑦))
34 df-br 5031 . . . . . . . 8 (𝑥𝐹(℩𝑦𝑥𝐹𝑦) ↔ ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
3533, 34sylib 221 . . . . . . 7 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
36 vex 3444 . . . . . . . 8 𝑥 ∈ V
37 opeq1 4763 . . . . . . . . 9 (𝑧 = 𝑥 → ⟨𝑧, (℩𝑦𝑥𝐹𝑦)⟩ = ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩)
3837eleq1d 2874 . . . . . . . 8 (𝑧 = 𝑥 → (⟨𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹 ↔ ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹))
3936, 38spcev 3555 . . . . . . 7 (⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹 → ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4035, 39syl 17 . . . . . 6 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4113elrn2 5785 . . . . . 6 ((℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹 ↔ ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4240, 41sylibr 237 . . . . 5 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹)
4311, 42vtoclg 3515 . . . 4 (𝐴 ∈ dom 𝐹 → ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹))
4443anabsi6 669 . . 3 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)
452, 44sylbi 220 . 2 (𝐹 defAt 𝐴 → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)
461, 45eqeltrd 2890 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2596  ∃!weu 2628  {csn 4525  cop 4531   class class class wbr 5030  dom cdm 5519  ran crn 5520  cres 5521  cio 6281  Fun wfun 6318   defAt wdfat 43672  ''''cafv2 43764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-dfat 43675  df-afv2 43765
This theorem is referenced by:  afv2ndefb  43780  dfatafv2rnb  43783
  Copyright terms: Public domain W3C validator