Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressndmafv2rn Structured version   Visualization version   GIF version

Theorem funressndmafv2rn 47224
Description: The alternate function value at a class 𝐴 is defined, i.e., in the range of the function if the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
funressndmafv2rn (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem funressndmafv2rn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatafv2iota 47211 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
2 df-dfat 47120 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
3 sneq 4599 . . . . . . . . 9 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43reseq2d 5950 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐴}))
54funeqd 6538 . . . . . . 7 (𝑥 = 𝐴 → (Fun (𝐹 ↾ {𝑥}) ↔ Fun (𝐹 ↾ {𝐴})))
6 eleq1 2816 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹𝐴 ∈ dom 𝐹))
75, 6anbi12d 632 . . . . . 6 (𝑥 = 𝐴 → ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) ↔ (Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹)))
8 breq1 5110 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
98iotabidv 6495 . . . . . . 7 (𝑥 = 𝐴 → (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝐴𝐹𝑦))
109eleq1d 2813 . . . . . 6 (𝑥 = 𝐴 → ((℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹 ↔ (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹))
117, 10imbi12d 344 . . . . 5 (𝑥 = 𝐴 → (((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹) ↔ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)))
12 eqid 2729 . . . . . . . . 9 (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦)
13 iotaex 6484 . . . . . . . . . 10 (℩𝑦𝑥𝐹𝑦) ∈ V
14 eqeq2 2741 . . . . . . . . . . . 12 (𝑧 = (℩𝑦𝑥𝐹𝑦) → ((℩𝑦𝑥𝐹𝑦) = 𝑧 ↔ (℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦)))
15 breq2 5111 . . . . . . . . . . . 12 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (𝑥𝐹𝑧𝑥𝐹(℩𝑦𝑥𝐹𝑦)))
1614, 15bibi12d 345 . . . . . . . . . . 11 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧) ↔ ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦))))
1716imbi2d 340 . . . . . . . . . 10 (𝑧 = (℩𝑦𝑥𝐹𝑦) → (((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧)) ↔ ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦)))))
18 eldmg 5862 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐹 → (𝑥 ∈ dom 𝐹 ↔ ∃𝑧 𝑥𝐹𝑧))
1918ibi 267 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → ∃𝑧 𝑥𝐹𝑧)
2019adantl 481 . . . . . . . . . . . 12 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃𝑧 𝑥𝐹𝑧)
21 funressnvmo 47046 . . . . . . . . . . . . . 14 (Fun (𝐹 ↾ {𝑥}) → ∃*𝑧 𝑥𝐹𝑧)
2221adantr 480 . . . . . . . . . . . . 13 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃*𝑧 𝑥𝐹𝑧)
23 moeu 2576 . . . . . . . . . . . . 13 (∃*𝑧 𝑥𝐹𝑧 ↔ (∃𝑧 𝑥𝐹𝑧 → ∃!𝑧 𝑥𝐹𝑧))
2422, 23sylib 218 . . . . . . . . . . . 12 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (∃𝑧 𝑥𝐹𝑧 → ∃!𝑧 𝑥𝐹𝑧))
2520, 24mpd 15 . . . . . . . . . . 11 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃!𝑧 𝑥𝐹𝑧)
26 iota1 6488 . . . . . . . . . . . 12 (∃!𝑧 𝑥𝐹𝑧 → (𝑥𝐹𝑧 ↔ (℩𝑧𝑥𝐹𝑧) = 𝑧))
27 breq2 5111 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑥𝐹𝑧𝑥𝐹𝑦))
2827cbviotavw 6472 . . . . . . . . . . . . 13 (℩𝑧𝑥𝐹𝑧) = (℩𝑦𝑥𝐹𝑦)
2928eqeq1i 2734 . . . . . . . . . . . 12 ((℩𝑧𝑥𝐹𝑧) = 𝑧 ↔ (℩𝑦𝑥𝐹𝑦) = 𝑧)
3026, 29bitr2di 288 . . . . . . . . . . 11 (∃!𝑧 𝑥𝐹𝑧 → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧))
3125, 30syl 17 . . . . . . . . . 10 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = 𝑧𝑥𝐹𝑧))
3213, 17, 31vtocl 3524 . . . . . . . . 9 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ((℩𝑦𝑥𝐹𝑦) = (℩𝑦𝑥𝐹𝑦) ↔ 𝑥𝐹(℩𝑦𝑥𝐹𝑦)))
3312, 32mpbii 233 . . . . . . . 8 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → 𝑥𝐹(℩𝑦𝑥𝐹𝑦))
34 df-br 5108 . . . . . . . 8 (𝑥𝐹(℩𝑦𝑥𝐹𝑦) ↔ ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
3533, 34sylib 218 . . . . . . 7 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
36 vex 3451 . . . . . . . 8 𝑥 ∈ V
37 opeq1 4837 . . . . . . . . 9 (𝑧 = 𝑥 → ⟨𝑧, (℩𝑦𝑥𝐹𝑦)⟩ = ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩)
3837eleq1d 2813 . . . . . . . 8 (𝑧 = 𝑥 → (⟨𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹 ↔ ⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹))
3936, 38spcev 3572 . . . . . . 7 (⟨𝑥, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹 → ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4035, 39syl 17 . . . . . 6 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4113elrn2 5856 . . . . . 6 ((℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹 ↔ ∃𝑧𝑧, (℩𝑦𝑥𝐹𝑦)⟩ ∈ 𝐹)
4240, 41sylibr 234 . . . . 5 ((Fun (𝐹 ↾ {𝑥}) ∧ 𝑥 ∈ dom 𝐹) → (℩𝑦𝑥𝐹𝑦) ∈ ran 𝐹)
4311, 42vtoclg 3520 . . . 4 (𝐴 ∈ dom 𝐹 → ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹))
4443anabsi6 670 . . 3 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)
452, 44sylbi 217 . 2 (𝐹 defAt 𝐴 → (℩𝑦𝐴𝐹𝑦) ∈ ran 𝐹)
461, 45eqeltrd 2828 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  {csn 4589  cop 4595   class class class wbr 5107  dom cdm 5638  ran crn 5639  cres 5640  cio 6462  Fun wfun 6505   defAt wdfat 47117  ''''cafv2 47209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-dfat 47120  df-afv2 47210
This theorem is referenced by:  afv2ndefb  47225  dfatafv2rnb  47228
  Copyright terms: Public domain W3C validator