MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi5 Structured version   Visualization version   GIF version

Theorem anabsi5 665
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (𝜑 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi5
StepHypRef Expression
1 simpl 481 . 2 ((𝜑𝜓) → 𝜑)
2 anabsi5.1 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
31, 2mpcom 38 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  anabsi6  666  anabsi8  668  3anidm12  1417  rspce  3600  onint  7780  f1oweALT  7961  php2OLD  9225  hasheqf1oi  14315  rtrclreclem3  15011  rtrclreclem4  15012  ablsimpgfindlem1  20018  ptcmpfi  23537  redwlk  29196  frgruhgr0v  29784  finxpreclem2  36574  finxpreclem6  36580  diophin  41812  diophun  41813  rspcegf  44009  stoweidlem36  45050
  Copyright terms: Public domain W3C validator