| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi5 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi5.1 | ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | anabsi5.1 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabsi6 670 anabsi8 672 3anidm12 1421 rspce 3580 onint 7769 f1oweALT 7954 hasheqf1oi 14323 rtrclreclem3 15033 rtrclreclem4 15034 ablsimpgfindlem1 20046 ptcmpfi 23707 redwlk 29607 frgruhgr0v 30200 finxpreclem2 37385 finxpreclem6 37391 diophin 42767 diophun 42768 rspcegf 45024 stoweidlem36 46041 grlimgrtri 47999 |
| Copyright terms: Public domain | W3C validator |