MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi5 Structured version   Visualization version   GIF version

Theorem anabsi5 669
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (𝜑 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi5
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
2 anabsi5.1 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
31, 2mpcom 38 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabsi6  670  anabsi8  672  3anidm12  1421  rspce  3580  onint  7769  f1oweALT  7954  hasheqf1oi  14323  rtrclreclem3  15033  rtrclreclem4  15034  ablsimpgfindlem1  20046  ptcmpfi  23707  redwlk  29607  frgruhgr0v  30200  finxpreclem2  37385  finxpreclem6  37391  diophin  42767  diophun  42768  rspcegf  45024  stoweidlem36  46041  grlimgrtri  47999
  Copyright terms: Public domain W3C validator