Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabsi5 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi5.1 | ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | anabsi5.1 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anabsi6 667 anabsi8 669 3anidm12 1418 rspce 3550 onint 7640 f1oweALT 7815 php2OLD 9006 hasheqf1oi 14066 rtrclreclem3 14771 rtrclreclem4 14772 ablsimpgfindlem1 19710 ptcmpfi 22964 redwlk 28040 frgruhgr0v 28628 finxpreclem2 35561 finxpreclem6 35567 diophin 40594 diophun 40595 rspcegf 42566 stoweidlem36 43577 |
Copyright terms: Public domain | W3C validator |