MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi5 Structured version   Visualization version   GIF version

Theorem anabsi5 669
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (𝜑 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi5
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
2 anabsi5.1 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
31, 2mpcom 38 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabsi6  670  anabsi8  672  3anidm12  1421  rspce  3566  onint  7726  f1oweALT  7907  hasheqf1oi  14258  rtrclreclem3  14967  rtrclreclem4  14968  ablsimpgfindlem1  19988  ptcmpfi  23698  redwlk  29616  frgruhgr0v  30208  finxpreclem2  37368  finxpreclem6  37374  diophin  42749  diophun  42750  rspcegf  45005  stoweidlem36  46021  grlimgrtri  47991
  Copyright terms: Public domain W3C validator