| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi5 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi5.1 | ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | anabsi5.1 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabsi6 670 anabsi8 672 3anidm12 1421 rspce 3590 onint 7784 f1oweALT 7971 php2OLD 9232 hasheqf1oi 14369 rtrclreclem3 15079 rtrclreclem4 15080 ablsimpgfindlem1 20090 ptcmpfi 23751 redwlk 29652 frgruhgr0v 30245 finxpreclem2 37408 finxpreclem6 37414 diophin 42795 diophun 42796 rspcegf 45047 stoweidlem36 46065 grlimgrtri 48008 |
| Copyright terms: Public domain | W3C validator |