MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi5 Structured version   Visualization version   GIF version

Theorem anabsi5 668
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (𝜑 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi5
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
2 anabsi5.1 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
31, 2mpcom 38 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabsi6  669  anabsi8  671  3anidm12  1419  rspce  3624  onint  7826  f1oweALT  8013  php2OLD  9286  hasheqf1oi  14400  rtrclreclem3  15109  rtrclreclem4  15110  ablsimpgfindlem1  20151  ptcmpfi  23842  redwlk  29708  frgruhgr0v  30296  finxpreclem2  37356  finxpreclem6  37362  diophin  42728  diophun  42729  rspcegf  44923  stoweidlem36  45957  grlimgrtri  47820
  Copyright terms: Public domain W3C validator