MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi5 Structured version   Visualization version   GIF version

Theorem anabsi5 669
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (𝜑 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi5
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
2 anabsi5.1 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
31, 2mpcom 38 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabsi6  670  anabsi8  672  3anidm12  1421  rspce  3577  onint  7766  f1oweALT  7951  hasheqf1oi  14316  rtrclreclem3  15026  rtrclreclem4  15027  ablsimpgfindlem1  20039  ptcmpfi  23700  redwlk  29600  frgruhgr0v  30193  finxpreclem2  37378  finxpreclem6  37384  diophin  42760  diophun  42761  rspcegf  45017  stoweidlem36  46034  grlimgrtri  47995
  Copyright terms: Public domain W3C validator