MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi5 Structured version   Visualization version   GIF version

Theorem anabsi5 666
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (𝜑 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi5
StepHypRef Expression
1 simpl 483 . 2 ((𝜑𝜓) → 𝜑)
2 anabsi5.1 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
31, 2mpcom 38 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  anabsi6  667  anabsi8  669  3anidm12  1418  rspce  3550  onint  7640  f1oweALT  7815  php2OLD  9006  hasheqf1oi  14066  rtrclreclem3  14771  rtrclreclem4  14772  ablsimpgfindlem1  19710  ptcmpfi  22964  redwlk  28040  frgruhgr0v  28628  finxpreclem2  35561  finxpreclem6  35567  diophin  40594  diophun  40595  rspcegf  42566  stoweidlem36  43577
  Copyright terms: Public domain W3C validator