MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi5 Structured version   Visualization version   GIF version

Theorem anabsi5 669
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi5.1 (𝜑 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi5 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi5
StepHypRef Expression
1 simpl 482 . 2 ((𝜑𝜓) → 𝜑)
2 anabsi5.1 . 2 (𝜑 → ((𝜑𝜓) → 𝜒))
31, 2mpcom 38 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabsi6  670  anabsi8  672  3anidm12  1421  rspce  3574  onint  7746  f1oweALT  7930  hasheqf1oi  14292  rtrclreclem3  15002  rtrclreclem4  15003  ablsimpgfindlem1  20015  ptcmpfi  23676  redwlk  29574  frgruhgr0v  30166  finxpreclem2  37351  finxpreclem6  37357  diophin  42733  diophun  42734  rspcegf  44990  stoweidlem36  46007  grlimgrtri  47968
  Copyright terms: Public domain W3C validator