| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi5 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi5.1 | ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | anabsi5.1 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabsi6 670 anabsi8 672 3anidm12 1421 rspce 3561 onint 7723 f1oweALT 7904 hasheqf1oi 14258 rtrclreclem3 14967 rtrclreclem4 14968 ablsimpgfindlem1 20021 ptcmpfi 23728 redwlk 29649 frgruhgr0v 30244 finxpreclem2 37434 finxpreclem6 37440 diophin 42875 diophun 42876 rspcegf 45130 stoweidlem36 46144 grlimgrtri 48113 |
| Copyright terms: Public domain | W3C validator |