![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabsi5 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi5.1 | ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | anabsi5.1 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anabsi6 669 anabsi8 671 3anidm12 1419 rspce 3624 onint 7826 f1oweALT 8013 php2OLD 9286 hasheqf1oi 14400 rtrclreclem3 15109 rtrclreclem4 15110 ablsimpgfindlem1 20151 ptcmpfi 23842 redwlk 29708 frgruhgr0v 30296 finxpreclem2 37356 finxpreclem6 37362 diophin 42728 diophun 42729 rspcegf 44923 stoweidlem36 45957 grlimgrtri 47820 |
Copyright terms: Public domain | W3C validator |