Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjnormssi Structured version   Visualization version   GIF version

Theorem pjnormssi 29955
 Description: Theorem 4.5(i)<->(vi) of [Beran] p. 112. (Contributed by NM, 26-Sep-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjco.1 𝐺C
pjco.2 𝐻C
Assertion
Ref Expression
pjnormssi (𝐺𝐻 ↔ ∀𝑥 ∈ ℋ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐺

Proof of Theorem pjnormssi
StepHypRef Expression
1 pjco.2 . . . . . . 7 𝐻C
2 pjco.1 . . . . . . 7 𝐺C
31, 2pjssmi 29952 . . . . . 6 (𝑥 ∈ ℋ → (𝐺𝐻 → (((proj𝐻)‘𝑥) − ((proj𝐺)‘𝑥)) = ((proj‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥)))
41, 2pjssge0i 29953 . . . . . 6 (𝑥 ∈ ℋ → ((((proj𝐻)‘𝑥) − ((proj𝐺)‘𝑥)) = ((proj‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥) → 0 ≤ ((((proj𝐻)‘𝑥) − ((proj𝐺)‘𝑥)) ·ih 𝑥)))
53, 4syld 47 . . . . 5 (𝑥 ∈ ℋ → (𝐺𝐻 → 0 ≤ ((((proj𝐻)‘𝑥) − ((proj𝐺)‘𝑥)) ·ih 𝑥)))
61, 2pjdifnormi 29954 . . . . 5 (𝑥 ∈ ℋ → (0 ≤ ((((proj𝐻)‘𝑥) − ((proj𝐺)‘𝑥)) ·ih 𝑥) ↔ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))))
75, 6sylibd 242 . . . 4 (𝑥 ∈ ℋ → (𝐺𝐻 → (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))))
87com12 32 . . 3 (𝐺𝐻 → (𝑥 ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))))
98ralrimiv 3151 . 2 (𝐺𝐻 → ∀𝑥 ∈ ℋ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)))
101choccli 29094 . . . . . . . 8 (⊥‘𝐻) ∈ C
1110cheli 29019 . . . . . . 7 (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ ℋ)
12 breq2 5037 . . . . . . . . . . . . 13 ((norm‘((proj𝐻)‘𝑥)) = 0 → ((norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)) ↔ (norm‘((proj𝐺)‘𝑥)) ≤ 0))
1312biimpac 482 . . . . . . . . . . . 12 (((norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)) ∧ (norm‘((proj𝐻)‘𝑥)) = 0) → (norm‘((proj𝐺)‘𝑥)) ≤ 0)
142pjhcli 29205 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ ℋ)
15 normge0 28913 . . . . . . . . . . . . . . 15 (((proj𝐺)‘𝑥) ∈ ℋ → 0 ≤ (norm‘((proj𝐺)‘𝑥)))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → 0 ≤ (norm‘((proj𝐺)‘𝑥)))
17 normcl 28912 . . . . . . . . . . . . . . . 16 (((proj𝐺)‘𝑥) ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ∈ ℝ)
1814, 17syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ∈ ℝ)
19 0re 10636 . . . . . . . . . . . . . . 15 0 ∈ ℝ
20 letri3 10719 . . . . . . . . . . . . . . . 16 (((norm‘((proj𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → ((norm‘((proj𝐺)‘𝑥)) = 0 ↔ ((norm‘((proj𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (norm‘((proj𝐺)‘𝑥)))))
2120biimprd 251 . . . . . . . . . . . . . . 15 (((norm‘((proj𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ) → (((norm‘((proj𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (norm‘((proj𝐺)‘𝑥))) → (norm‘((proj𝐺)‘𝑥)) = 0))
2218, 19, 21sylancl 589 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((norm‘((proj𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤ (norm‘((proj𝐺)‘𝑥))) → (norm‘((proj𝐺)‘𝑥)) = 0))
2316, 22sylan2i 608 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((norm‘((proj𝐺)‘𝑥)) ≤ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((proj𝐺)‘𝑥)) = 0))
2423anabsi6 669 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm‘((proj𝐺)‘𝑥)) ≤ 0) → (norm‘((proj𝐺)‘𝑥)) = 0)
2513, 24sylan2 595 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ ((norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)) ∧ (norm‘((proj𝐻)‘𝑥)) = 0)) → (norm‘((proj𝐺)‘𝑥)) = 0)
2625expr 460 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → ((norm‘((proj𝐻)‘𝑥)) = 0 → (norm‘((proj𝐺)‘𝑥)) = 0))
271pjhcli 29205 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((proj𝐻)‘𝑥) ∈ ℋ)
28 norm-i 28916 . . . . . . . . . . . . 13 (((proj𝐻)‘𝑥) ∈ ℋ → ((norm‘((proj𝐻)‘𝑥)) = 0 ↔ ((proj𝐻)‘𝑥) = 0))
2927, 28syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘((proj𝐻)‘𝑥)) = 0 ↔ ((proj𝐻)‘𝑥) = 0))
30 pjoc2 29226 . . . . . . . . . . . . 13 ((𝐻C𝑥 ∈ ℋ) → (𝑥 ∈ (⊥‘𝐻) ↔ ((proj𝐻)‘𝑥) = 0))
311, 30mpan 689 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (𝑥 ∈ (⊥‘𝐻) ↔ ((proj𝐻)‘𝑥) = 0))
3229, 31bitr4d 285 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm‘((proj𝐻)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐻)))
3332adantr 484 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → ((norm‘((proj𝐻)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐻)))
34 norm-i 28916 . . . . . . . . . . . . 13 (((proj𝐺)‘𝑥) ∈ ℋ → ((norm‘((proj𝐺)‘𝑥)) = 0 ↔ ((proj𝐺)‘𝑥) = 0))
3514, 34syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm‘((proj𝐺)‘𝑥)) = 0 ↔ ((proj𝐺)‘𝑥) = 0))
36 pjoc2 29226 . . . . . . . . . . . . 13 ((𝐺C𝑥 ∈ ℋ) → (𝑥 ∈ (⊥‘𝐺) ↔ ((proj𝐺)‘𝑥) = 0))
372, 36mpan 689 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (𝑥 ∈ (⊥‘𝐺) ↔ ((proj𝐺)‘𝑥) = 0))
3835, 37bitr4d 285 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm‘((proj𝐺)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐺)))
3938adantr 484 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → ((norm‘((proj𝐺)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐺)))
4026, 33, 393imtr3d 296 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺)))
4140ex 416 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺))))
4241a2i 14 . . . . . . 7 ((𝑥 ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → (𝑥 ∈ ℋ → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺))))
4311, 42syl5 34 . . . . . 6 ((𝑥 ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → (𝑥 ∈ (⊥‘𝐻) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺))))
4443pm2.43d 53 . . . . 5 ((𝑥 ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺)))
4544alimi 1813 . . . 4 (∀𝑥(𝑥 ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))) → ∀𝑥(𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺)))
46 df-ral 3114 . . . 4 (∀𝑥 ∈ ℋ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)) ↔ ∀𝑥(𝑥 ∈ ℋ → (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥))))
47 dfss2 3904 . . . 4 ((⊥‘𝐻) ⊆ (⊥‘𝐺) ↔ ∀𝑥(𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺)))
4845, 46, 473imtr4i 295 . . 3 (∀𝑥 ∈ ℋ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)) → (⊥‘𝐻) ⊆ (⊥‘𝐺))
492, 1chsscon3i 29248 . . 3 (𝐺𝐻 ↔ (⊥‘𝐻) ⊆ (⊥‘𝐺))
5048, 49sylibr 237 . 2 (∀𝑥 ∈ ℋ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)) → 𝐺𝐻)
519, 50impbii 212 1 (𝐺𝐻 ↔ ∀𝑥 ∈ ℋ (norm‘((proj𝐺)‘𝑥)) ≤ (norm‘((proj𝐻)‘𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2112  ∀wral 3109   ∩ cin 3883   ⊆ wss 3884   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  0cc0 10530   ≤ cle 10669   ℋchba 28706   ·ih csp 28709  normℎcno 28710  0ℎc0v 28711   −ℎ cmv 28712   Cℋ cch 28716  ⊥cort 28717  projℎcpjh 28724 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610  ax-hilex 28786  ax-hfvadd 28787  ax-hvcom 28788  ax-hvass 28789  ax-hv0cl 28790  ax-hvaddid 28791  ax-hfvmul 28792  ax-hvmulid 28793  ax-hvmulass 28794  ax-hvdistr1 28795  ax-hvdistr2 28796  ax-hvmul0 28797  ax-hfi 28866  ax-his1 28869  ax-his2 28870  ax-his3 28871  ax-his4 28872  ax-hcompl 28989 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-cn 21836  df-cnp 21837  df-lm 21838  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cfil 23863  df-cau 23864  df-cmet 23865  df-grpo 28280  df-gid 28281  df-ginv 28282  df-gdiv 28283  df-ablo 28332  df-vc 28346  df-nv 28379  df-va 28382  df-ba 28383  df-sm 28384  df-0v 28385  df-vs 28386  df-nmcv 28387  df-ims 28388  df-dip 28488  df-ssp 28509  df-ph 28600  df-cbn 28650  df-hnorm 28755  df-hba 28756  df-hvsub 28758  df-hlim 28759  df-hcau 28760  df-sh 28994  df-ch 29008  df-oc 29039  df-ch0 29040  df-shs 29095  df-pjh 29182 This theorem is referenced by:  pjssposi  29959
 Copyright terms: Public domain W3C validator