Proof of Theorem pjnormssi
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pjco.2 | . . . . . . 7
⊢ 𝐻 ∈
Cℋ | 
| 2 |  | pjco.1 | . . . . . . 7
⊢ 𝐺 ∈
Cℋ | 
| 3 | 1, 2 | pjssmi 32185 | . . . . . 6
⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ 𝐻 →
(((projℎ‘𝐻)‘𝑥) −ℎ
((projℎ‘𝐺)‘𝑥)) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥))) | 
| 4 | 1, 2 | pjssge0i 32186 | . . . . . 6
⊢ (𝑥 ∈ ℋ →
((((projℎ‘𝐻)‘𝑥) −ℎ
((projℎ‘𝐺)‘𝑥)) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥) → 0 ≤
((((projℎ‘𝐻)‘𝑥) −ℎ
((projℎ‘𝐺)‘𝑥)) ·ih 𝑥))) | 
| 5 | 3, 4 | syld 47 | . . . . 5
⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ 𝐻 → 0 ≤
((((projℎ‘𝐻)‘𝑥) −ℎ
((projℎ‘𝐺)‘𝑥)) ·ih 𝑥))) | 
| 6 | 1, 2 | pjdifnormi 32187 | . . . . 5
⊢ (𝑥 ∈ ℋ → (0 ≤
((((projℎ‘𝐻)‘𝑥) −ℎ
((projℎ‘𝐺)‘𝑥)) ·ih 𝑥) ↔
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)))) | 
| 7 | 5, 6 | sylibd 239 | . . . 4
⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ 𝐻 →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)))) | 
| 8 | 7 | com12 32 | . . 3
⊢ (𝐺 ⊆ 𝐻 → (𝑥 ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)))) | 
| 9 | 8 | ralrimiv 3144 | . 2
⊢ (𝐺 ⊆ 𝐻 → ∀𝑥 ∈ ℋ
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) | 
| 10 | 1 | choccli 31327 | . . . . . . . 8
⊢
(⊥‘𝐻)
∈ Cℋ | 
| 11 | 10 | cheli 31252 | . . . . . . 7
⊢ (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ ℋ) | 
| 12 |  | breq2 5146 | . . . . . . . . . . . . 13
⊢
((normℎ‘((projℎ‘𝐻)‘𝑥)) = 0 →
((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)) ↔
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ 0)) | 
| 13 | 12 | biimpac 478 | . . . . . . . . . . . 12
⊢
(((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)) ∧
(normℎ‘((projℎ‘𝐻)‘𝑥)) = 0) →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ 0) | 
| 14 | 2 | pjhcli 31438 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℋ →
((projℎ‘𝐺)‘𝑥) ∈ ℋ) | 
| 15 |  | normge0 31146 | . . . . . . . . . . . . . . 15
⊢
(((projℎ‘𝐺)‘𝑥) ∈ ℋ → 0 ≤
(normℎ‘((projℎ‘𝐺)‘𝑥))) | 
| 16 | 14, 15 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ → 0 ≤
(normℎ‘((projℎ‘𝐺)‘𝑥))) | 
| 17 |  | normcl 31145 | . . . . . . . . . . . . . . . 16
⊢
(((projℎ‘𝐺)‘𝑥) ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ∈ ℝ) | 
| 18 | 14, 17 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ∈ ℝ) | 
| 19 |  | 0re 11264 | . . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ | 
| 20 |  | letri3 11347 | . . . . . . . . . . . . . . . 16
⊢
(((normℎ‘((projℎ‘𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((normℎ‘((projℎ‘𝐺)‘𝑥)) = 0 ↔
((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤
(normℎ‘((projℎ‘𝐺)‘𝑥))))) | 
| 21 | 20 | biimprd 248 | . . . . . . . . . . . . . . 15
⊢
(((normℎ‘((projℎ‘𝐺)‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤
(normℎ‘((projℎ‘𝐺)‘𝑥))) →
(normℎ‘((projℎ‘𝐺)‘𝑥)) = 0)) | 
| 22 | 18, 19, 21 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ →
(((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ 0 ∧ 0 ≤
(normℎ‘((projℎ‘𝐺)‘𝑥))) →
(normℎ‘((projℎ‘𝐺)‘𝑥)) = 0)) | 
| 23 | 16, 22 | sylan2i 606 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
(((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ 0 ∧ 𝑥 ∈ ℋ) →
(normℎ‘((projℎ‘𝐺)‘𝑥)) = 0)) | 
| 24 | 23 | anabsi6 670 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ 0) →
(normℎ‘((projℎ‘𝐺)‘𝑥)) = 0) | 
| 25 | 13, 24 | sylan2 593 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧
((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)) ∧
(normℎ‘((projℎ‘𝐻)‘𝑥)) = 0)) →
(normℎ‘((projℎ‘𝐺)‘𝑥)) = 0) | 
| 26 | 25 | expr 456 | . . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) →
((normℎ‘((projℎ‘𝐻)‘𝑥)) = 0 →
(normℎ‘((projℎ‘𝐺)‘𝑥)) = 0)) | 
| 27 | 1 | pjhcli 31438 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
((projℎ‘𝐻)‘𝑥) ∈ ℋ) | 
| 28 |  | norm-i 31149 | . . . . . . . . . . . . 13
⊢
(((projℎ‘𝐻)‘𝑥) ∈ ℋ →
((normℎ‘((projℎ‘𝐻)‘𝑥)) = 0 ↔
((projℎ‘𝐻)‘𝑥) = 0ℎ)) | 
| 29 | 27, 28 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘((projℎ‘𝐻)‘𝑥)) = 0 ↔
((projℎ‘𝐻)‘𝑥) = 0ℎ)) | 
| 30 |  | pjoc2 31459 | . . . . . . . . . . . . 13
⊢ ((𝐻 ∈
Cℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (⊥‘𝐻) ↔
((projℎ‘𝐻)‘𝑥) = 0ℎ)) | 
| 31 | 1, 30 | mpan 690 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ → (𝑥 ∈ (⊥‘𝐻) ↔
((projℎ‘𝐻)‘𝑥) = 0ℎ)) | 
| 32 | 29, 31 | bitr4d 282 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
((normℎ‘((projℎ‘𝐻)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐻))) | 
| 33 | 32 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) →
((normℎ‘((projℎ‘𝐻)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐻))) | 
| 34 |  | norm-i 31149 | . . . . . . . . . . . . 13
⊢
(((projℎ‘𝐺)‘𝑥) ∈ ℋ →
((normℎ‘((projℎ‘𝐺)‘𝑥)) = 0 ↔
((projℎ‘𝐺)‘𝑥) = 0ℎ)) | 
| 35 | 14, 34 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘((projℎ‘𝐺)‘𝑥)) = 0 ↔
((projℎ‘𝐺)‘𝑥) = 0ℎ)) | 
| 36 |  | pjoc2 31459 | . . . . . . . . . . . . 13
⊢ ((𝐺 ∈
Cℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ∈ (⊥‘𝐺) ↔
((projℎ‘𝐺)‘𝑥) = 0ℎ)) | 
| 37 | 2, 36 | mpan 690 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ → (𝑥 ∈ (⊥‘𝐺) ↔
((projℎ‘𝐺)‘𝑥) = 0ℎ)) | 
| 38 | 35, 37 | bitr4d 282 | . . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
((normℎ‘((projℎ‘𝐺)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐺))) | 
| 39 | 38 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) →
((normℎ‘((projℎ‘𝐺)‘𝑥)) = 0 ↔ 𝑥 ∈ (⊥‘𝐺))) | 
| 40 | 26, 33, 39 | 3imtr3d 293 | . . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺))) | 
| 41 | 40 | ex 412 | . . . . . . . 8
⊢ (𝑥 ∈ ℋ →
((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺)))) | 
| 42 | 41 | a2i 14 | . . . . . . 7
⊢ ((𝑥 ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) → (𝑥 ∈ ℋ → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺)))) | 
| 43 | 11, 42 | syl5 34 | . . . . . 6
⊢ ((𝑥 ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) → (𝑥 ∈ (⊥‘𝐻) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺)))) | 
| 44 | 43 | pm2.43d 53 | . . . . 5
⊢ ((𝑥 ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) → (𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺))) | 
| 45 | 44 | alimi 1810 | . . . 4
⊢
(∀𝑥(𝑥 ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) → ∀𝑥(𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺))) | 
| 46 |  | df-ral 3061 | . . . 4
⊢
(∀𝑥 ∈
ℋ (normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)) ↔ ∀𝑥(𝑥 ∈ ℋ →
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)))) | 
| 47 |  | df-ss 3967 | . . . 4
⊢
((⊥‘𝐻)
⊆ (⊥‘𝐺)
↔ ∀𝑥(𝑥 ∈ (⊥‘𝐻) → 𝑥 ∈ (⊥‘𝐺))) | 
| 48 | 45, 46, 47 | 3imtr4i 292 | . . 3
⊢
(∀𝑥 ∈
ℋ (normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)) → (⊥‘𝐻) ⊆ (⊥‘𝐺)) | 
| 49 | 2, 1 | chsscon3i 31481 | . . 3
⊢ (𝐺 ⊆ 𝐻 ↔ (⊥‘𝐻) ⊆ (⊥‘𝐺)) | 
| 50 | 48, 49 | sylibr 234 | . 2
⊢
(∀𝑥 ∈
ℋ (normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥)) → 𝐺 ⊆ 𝐻) | 
| 51 | 9, 50 | impbii 209 | 1
⊢ (𝐺 ⊆ 𝐻 ↔ ∀𝑥 ∈ ℋ
(normℎ‘((projℎ‘𝐺)‘𝑥)) ≤
(normℎ‘((projℎ‘𝐻)‘𝑥))) |