![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version |
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylan2d 604 anabsi6 669 mpand 694 2eu3 2657 ralcom2 3385 somo 5646 wereu2 5697 smoel 8416 cfub 10318 cofsmo 10338 grudomon 10886 axpre-sup 11238 leltadd 11774 lemul12b 12151 lbzbi 13001 injresinj 13838 swrdnnn0nd 14704 abslt 15363 absle 15364 o1lo1 15583 o1co 15632 rlimno1 15702 dvdssub2 16349 lublecllem 18430 f1omvdco2 19490 ptpjpre1 23600 iocopnst 24989 ovolicc2lem4 25574 itg2le 25794 ulmcau 26456 cxpeq0 26738 pntrsumbnd2 27629 absslt 28291 cvcon3 32316 atexch 32413 abfmpeld 32672 wsuclem 35789 btwntriv2 35976 btwnexch3 35984 isbasisrelowllem1 37321 isbasisrelowllem2 37322 relowlssretop 37329 finxpsuclem 37363 isinf2 37371 finixpnum 37565 fin2solem 37566 ltflcei 37568 poimirlem27 37607 itg2addnclem 37631 unirep 37674 prter2 38837 cvrcon3b 39233 fltaccoprm 42595 incssnn0 42667 eldioph4b 42767 fphpdo 42773 pellexlem5 42789 pm14.24 44401 traxext 44910 icceuelpart 47310 prsprel 47361 sprsymrelfolem2 47367 goldbachthlem2 47420 gbegt5 47635 aacllem 48895 |
Copyright terms: Public domain | W3C validator |