Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version |
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylan2d 604 anabsi6 666 mpand 691 2eu3 2656 ralcom2 3290 somo 5539 wereu2 5585 smoel 8175 cfub 9989 cofsmo 10009 grudomon 10557 axpre-sup 10909 leltadd 11442 lemul12b 11815 lbzbi 12658 injresinj 13489 swrdnnn0nd 14350 abslt 15007 absle 15008 o1lo1 15227 o1co 15276 rlimno1 15346 dvdssub2 15991 lublecllem 18059 f1omvdco2 19037 ptpjpre1 22703 iocopnst 24084 ovolicc2lem4 24665 itg2le 24885 ulmcau 25535 cxpeq0 25814 pntrsumbnd2 26696 cvcon3 30625 atexch 30722 abfmpeld 30970 wsuclem 33798 btwntriv2 34293 btwnexch3 34301 isbasisrelowllem1 35505 isbasisrelowllem2 35506 relowlssretop 35513 finxpsuclem 35547 isinf2 35555 finixpnum 35741 fin2solem 35742 ltflcei 35744 poimirlem27 35783 itg2addnclem 35807 unirep 35850 prter2 36874 cvrcon3b 37270 sn-negex12 40378 fltaccoprm 40457 incssnn0 40513 eldioph4b 40613 fphpdo 40619 pellexlem5 40635 pm14.24 42003 icceuelpart 44840 prsprel 44891 sprsymrelfolem2 44897 goldbachthlem2 44950 gbegt5 45165 aacllem 46457 |
Copyright terms: Public domain | W3C validator |