| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2d 605 anabsi6 670 mpand 695 2eu3 2653 ralcom2 3356 somo 5600 wereu2 5651 smoel 8374 cfub 10263 cofsmo 10283 grudomon 10831 axpre-sup 11183 leltadd 11721 lemul12b 12098 lbzbi 12952 injresinj 13804 swrdnnn0nd 14674 abslt 15333 absle 15334 o1lo1 15553 o1co 15602 rlimno1 15670 dvdssub2 16320 lublecllem 18370 f1omvdco2 19429 ptpjpre1 23509 iocopnst 24888 ovolicc2lem4 25473 itg2le 25692 ulmcau 26356 cxpeq0 26639 pntrsumbnd2 27530 absslt 28203 cvcon3 32265 atexch 32362 abfmpeld 32632 wsuclem 35843 btwntriv2 36030 btwnexch3 36038 isbasisrelowllem1 37373 isbasisrelowllem2 37374 relowlssretop 37381 finxpsuclem 37415 isinf2 37423 finixpnum 37629 fin2solem 37630 ltflcei 37632 poimirlem27 37671 itg2addnclem 37695 unirep 37738 prter2 38899 cvrcon3b 39295 fltaccoprm 42663 incssnn0 42734 eldioph4b 42834 fphpdo 42840 pellexlem5 42856 pm14.24 44456 traxext 45002 icceuelpart 47450 prsprel 47501 sprsymrelfolem2 47507 goldbachthlem2 47560 gbegt5 47775 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |