![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version |
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylan2d 605 anabsi6 670 mpand 695 2eu3 2651 ralcom2 3374 somo 5634 wereu2 5685 smoel 8398 cfub 10286 cofsmo 10306 grudomon 10854 axpre-sup 11206 leltadd 11744 lemul12b 12121 lbzbi 12975 injresinj 13823 swrdnnn0nd 14690 abslt 15349 absle 15350 o1lo1 15569 o1co 15618 rlimno1 15686 dvdssub2 16334 lublecllem 18417 f1omvdco2 19480 ptpjpre1 23594 iocopnst 24983 ovolicc2lem4 25568 itg2le 25788 ulmcau 26452 cxpeq0 26734 pntrsumbnd2 27625 absslt 28287 cvcon3 32312 atexch 32409 abfmpeld 32670 wsuclem 35806 btwntriv2 35993 btwnexch3 36001 isbasisrelowllem1 37337 isbasisrelowllem2 37338 relowlssretop 37345 finxpsuclem 37379 isinf2 37387 finixpnum 37591 fin2solem 37592 ltflcei 37594 poimirlem27 37633 itg2addnclem 37657 unirep 37700 prter2 38862 cvrcon3b 39258 fltaccoprm 42626 incssnn0 42698 eldioph4b 42798 fphpdo 42804 pellexlem5 42820 pm14.24 44427 traxext 44937 icceuelpart 47360 prsprel 47411 sprsymrelfolem2 47417 goldbachthlem2 47470 gbegt5 47685 aacllem 49031 |
Copyright terms: Public domain | W3C validator |