Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version |
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expcomd 418 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 412 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: sylan2d 606 anabsi6 668 mpand 693 2eu3 2653 ralcom2 3308 somo 5551 wereu2 5597 smoel 8222 cfub 10051 cofsmo 10071 grudomon 10619 axpre-sup 10971 leltadd 11505 lemul12b 11878 lbzbi 12722 injresinj 13554 swrdnnn0nd 14414 abslt 15071 absle 15072 o1lo1 15291 o1co 15340 rlimno1 15410 dvdssub2 16055 lublecllem 18123 f1omvdco2 19101 ptpjpre1 22767 iocopnst 24148 ovolicc2lem4 24729 itg2le 24949 ulmcau 25599 cxpeq0 25878 pntrsumbnd2 26760 cvcon3 30691 atexch 30788 abfmpeld 31036 wsuclem 33864 btwntriv2 34359 btwnexch3 34367 isbasisrelowllem1 35570 isbasisrelowllem2 35571 relowlssretop 35578 finxpsuclem 35612 isinf2 35620 finixpnum 35806 fin2solem 35807 ltflcei 35809 poimirlem27 35848 itg2addnclem 35872 unirep 35915 prter2 36937 cvrcon3b 37333 sn-negex12 40435 fltaccoprm 40514 incssnn0 40570 eldioph4b 40670 fphpdo 40676 pellexlem5 40692 pm14.24 42088 icceuelpart 44946 prsprel 44997 sprsymrelfolem2 45003 goldbachthlem2 45056 gbegt5 45271 aacllem 46563 |
Copyright terms: Public domain | W3C validator |