| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2d 605 anabsi6 670 mpand 695 2eu3 2647 ralcom2 3351 somo 5585 wereu2 5635 smoel 8329 cfub 10202 cofsmo 10222 grudomon 10770 axpre-sup 11122 leltadd 11662 lemul12b 12039 lbzbi 12895 injresinj 13749 swrdnnn0nd 14621 abslt 15281 absle 15282 o1lo1 15503 o1co 15552 rlimno1 15620 dvdssub2 16271 lublecllem 18319 f1omvdco2 19378 ptpjpre1 23458 iocopnst 24837 ovolicc2lem4 25421 itg2le 25640 ulmcau 26304 cxpeq0 26587 pntrsumbnd2 27478 absslt 28151 cvcon3 32213 atexch 32310 abfmpeld 32578 wsuclem 35813 btwntriv2 36000 btwnexch3 36008 isbasisrelowllem1 37343 isbasisrelowllem2 37344 relowlssretop 37351 finxpsuclem 37385 isinf2 37393 finixpnum 37599 fin2solem 37600 ltflcei 37602 poimirlem27 37641 itg2addnclem 37665 unirep 37708 prter2 38874 cvrcon3b 39270 fltaccoprm 42628 incssnn0 42699 eldioph4b 42799 fphpdo 42805 pellexlem5 42821 pm14.24 44421 traxext 44967 icceuelpart 47437 prsprel 47488 sprsymrelfolem2 47494 goldbachthlem2 47547 gbegt5 47762 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |