| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2d 605 anabsi6 670 mpand 695 2eu3 2647 ralcom2 3342 somo 5570 wereu2 5620 smoel 8290 cfub 10162 cofsmo 10182 grudomon 10730 axpre-sup 11082 leltadd 11622 lemul12b 11999 lbzbi 12855 injresinj 13709 swrdnnn0nd 14581 abslt 15240 absle 15241 o1lo1 15462 o1co 15511 rlimno1 15579 dvdssub2 16230 lublecllem 18282 f1omvdco2 19345 ptpjpre1 23474 iocopnst 24853 ovolicc2lem4 25437 itg2le 25656 ulmcau 26320 cxpeq0 26603 pntrsumbnd2 27494 absslt 28174 cvcon3 32246 atexch 32343 abfmpeld 32611 wsuclem 35798 btwntriv2 35985 btwnexch3 35993 isbasisrelowllem1 37328 isbasisrelowllem2 37329 relowlssretop 37336 finxpsuclem 37370 isinf2 37378 finixpnum 37584 fin2solem 37585 ltflcei 37587 poimirlem27 37626 itg2addnclem 37650 unirep 37693 prter2 38859 cvrcon3b 39255 fltaccoprm 42613 incssnn0 42684 eldioph4b 42784 fphpdo 42790 pellexlem5 42806 pm14.24 44405 traxext 44951 icceuelpart 47421 prsprel 47472 sprsymrelfolem2 47478 goldbachthlem2 47531 gbegt5 47746 aacllem 49774 |
| Copyright terms: Public domain | W3C validator |