| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2d 605 anabsi6 670 mpand 695 2eu3 2648 ralcom2 3341 somo 5561 wereu2 5611 smoel 8275 cfub 10132 cofsmo 10152 grudomon 10700 axpre-sup 11052 leltadd 11593 lemul12b 11970 lbzbi 12826 injresinj 13683 swrdnnn0nd 14556 abslt 15214 absle 15215 o1lo1 15436 o1co 15485 rlimno1 15553 dvdssub2 16204 lublecllem 18256 f1omvdco2 19353 ptpjpre1 23479 iocopnst 24857 ovolicc2lem4 25441 itg2le 25660 ulmcau 26324 cxpeq0 26607 pntrsumbnd2 27498 absslt 28180 cvcon3 32254 atexch 32351 abfmpeld 32626 wsuclem 35838 btwntriv2 36025 btwnexch3 36033 isbasisrelowllem1 37368 isbasisrelowllem2 37369 relowlssretop 37376 finxpsuclem 37410 isinf2 37418 finixpnum 37624 fin2solem 37625 ltflcei 37627 poimirlem27 37666 itg2addnclem 37690 unirep 37733 prter2 38899 cvrcon3b 39295 fltaccoprm 42652 incssnn0 42723 eldioph4b 42823 fphpdo 42829 pellexlem5 42845 pm14.24 44444 traxext 44989 icceuelpart 47446 prsprel 47497 sprsymrelfolem2 47503 goldbachthlem2 47556 gbegt5 47771 aacllem 49812 |
| Copyright terms: Public domain | W3C validator |