| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2d 605 anabsi6 670 mpand 695 2eu3 2651 ralcom2 3345 somo 5568 wereu2 5618 smoel 8289 cfub 10150 cofsmo 10170 grudomon 10718 axpre-sup 11070 leltadd 11611 lemul12b 11988 lbzbi 12844 injresinj 13701 swrdnnn0nd 14574 abslt 15232 absle 15233 o1lo1 15454 o1co 15503 rlimno1 15571 dvdssub2 16222 lublecllem 18274 f1omvdco2 19370 ptpjpre1 23496 iocopnst 24874 ovolicc2lem4 25458 itg2le 25677 ulmcau 26341 cxpeq0 26624 pntrsumbnd2 27515 absslt 28197 cvcon3 32275 atexch 32372 abfmpeld 32647 r1filimi 35125 wsuclem 35878 btwntriv2 36067 btwnexch3 36075 isbasisrelowllem1 37410 isbasisrelowllem2 37411 relowlssretop 37418 finxpsuclem 37452 isinf2 37460 finixpnum 37655 fin2solem 37656 ltflcei 37658 poimirlem27 37697 itg2addnclem 37721 unirep 37764 prter2 38990 cvrcon3b 39386 fltaccoprm 42748 incssnn0 42818 eldioph4b 42918 fphpdo 42924 pellexlem5 42940 pm14.24 44539 traxext 45084 icceuelpart 47550 prsprel 47601 sprsymrelfolem2 47607 goldbachthlem2 47660 gbegt5 47875 aacllem 49916 |
| Copyright terms: Public domain | W3C validator |