| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expcomd 416 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylan2d 605 anabsi6 670 mpand 695 2eu3 2648 ralcom2 3353 somo 5588 wereu2 5638 smoel 8332 cfub 10209 cofsmo 10229 grudomon 10777 axpre-sup 11129 leltadd 11669 lemul12b 12046 lbzbi 12902 injresinj 13756 swrdnnn0nd 14628 abslt 15288 absle 15289 o1lo1 15510 o1co 15559 rlimno1 15627 dvdssub2 16278 lublecllem 18326 f1omvdco2 19385 ptpjpre1 23465 iocopnst 24844 ovolicc2lem4 25428 itg2le 25647 ulmcau 26311 cxpeq0 26594 pntrsumbnd2 27485 absslt 28158 cvcon3 32220 atexch 32317 abfmpeld 32585 wsuclem 35820 btwntriv2 36007 btwnexch3 36015 isbasisrelowllem1 37350 isbasisrelowllem2 37351 relowlssretop 37358 finxpsuclem 37392 isinf2 37400 finixpnum 37606 fin2solem 37607 ltflcei 37609 poimirlem27 37648 itg2addnclem 37672 unirep 37715 prter2 38881 cvrcon3b 39277 fltaccoprm 42635 incssnn0 42706 eldioph4b 42806 fphpdo 42812 pellexlem5 42828 pm14.24 44428 traxext 44974 icceuelpart 47441 prsprel 47492 sprsymrelfolem2 47498 goldbachthlem2 47551 gbegt5 47766 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |