Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancomsd | Structured version Visualization version GIF version |
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomsd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expcomd 420 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 414 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: sylan2d 607 anabsi6 669 mpand 694 2eu3 2675 ralcom2 3282 somo 5484 wereu2 5526 smoel 8014 cfub 9723 cofsmo 9743 grudomon 10291 axpre-sup 10643 leltadd 11176 lemul12b 11549 lbzbi 12390 injresinj 13221 swrdnnn0nd 14079 abslt 14736 absle 14737 o1lo1 14956 o1co 15005 rlimno1 15072 dvdssub2 15716 lublecllem 17679 f1omvdco2 18658 ptpjpre1 22286 iocopnst 23656 ovolicc2lem4 24235 itg2le 24454 ulmcau 25104 cxpeq0 25383 pntrsumbnd2 26265 cvcon3 30181 atexch 30278 abfmpeld 30529 wsuclem 33388 btwntriv2 33899 btwnexch3 33907 isbasisrelowllem1 35088 isbasisrelowllem2 35089 relowlssretop 35096 finxpsuclem 35130 isinf2 35138 finixpnum 35358 fin2solem 35359 ltflcei 35361 poimirlem27 35400 itg2addnclem 35424 unirep 35467 prter2 36493 cvrcon3b 36889 sn-negex12 39941 fltaccoprm 40015 incssnn0 40071 eldioph4b 40171 fphpdo 40177 pellexlem5 40193 pm14.24 41555 icceuelpart 44381 prsprel 44432 sprsymrelfolem2 44438 goldbachthlem2 44491 gbegt5 44706 aacllem 45827 |
Copyright terms: Public domain | W3C validator |