Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | 2 | ancoms 462 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: syldbl2 841 nelrdva 3618 elunii 4824 ordelord 6235 fvelrn 6897 onsucuni2 7613 fnfi 8858 prnmax 10609 relexpindlem 14626 opreu2reuALT 30544 ralssiun 35315 monotoddzz 40468 oddcomabszz 40469 flcidc 40702 fmul01 42796 fprodcnlem 42815 stoweidlem4 43220 stoweidlem20 43236 stoweidlem22 43238 stoweidlem27 43243 stoweidlem30 43246 stoweidlem51 43267 stoweidlem59 43275 fourierdlem21 43344 fourierdlem89 43411 fourierdlem90 43412 fourierdlem91 43413 fourierdlem104 43426 |
Copyright terms: Public domain | W3C validator |