![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: syldbl2 841 nelrdva 3714 elunii 4917 ordelord 6408 fvelrn 7096 onsucuni2 7854 fnfi 9216 prnmax 11033 relexpindlem 15099 opreu2reuALT 32505 ralssiun 37390 monotoddzz 42932 oddcomabszz 42933 flcidc 43159 fmul01 45536 fprodcnlem 45555 stoweidlem4 45960 stoweidlem20 45976 stoweidlem22 45978 stoweidlem27 45983 stoweidlem30 45986 stoweidlem51 46007 stoweidlem59 46015 fourierdlem21 46084 fourierdlem89 46151 fourierdlem90 46152 fourierdlem91 46153 fourierdlem104 46166 |
Copyright terms: Public domain | W3C validator |