| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syldbl2 841 nelrdva 3679 elunii 4879 ordelord 6357 fvelrn 7051 onsucuni2 7812 fnfi 9148 prnmax 10955 relexpindlem 15036 opreu2reuALT 32413 ralssiun 37402 monotoddzz 42939 oddcomabszz 42940 flcidc 43166 fmul01 45585 fprodcnlem 45604 stoweidlem4 46009 stoweidlem20 46025 stoweidlem22 46027 stoweidlem27 46032 stoweidlem30 46035 stoweidlem51 46056 stoweidlem59 46064 fourierdlem21 46133 fourierdlem89 46200 fourierdlem90 46201 fourierdlem91 46202 fourierdlem104 46215 |
| Copyright terms: Public domain | W3C validator |