| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syldbl2 841 nelrdva 3693 elunii 4893 ordelord 6379 fvelrn 7071 onsucuni2 7833 fnfi 9197 prnmax 11014 relexpindlem 15087 opreu2reuALT 32463 ralssiun 37430 monotoddzz 42934 oddcomabszz 42935 flcidc 43161 fmul01 45576 fprodcnlem 45595 stoweidlem4 46000 stoweidlem20 46016 stoweidlem22 46018 stoweidlem27 46023 stoweidlem30 46026 stoweidlem51 46047 stoweidlem59 46055 fourierdlem21 46124 fourierdlem89 46191 fourierdlem90 46192 fourierdlem91 46193 fourierdlem104 46206 |
| Copyright terms: Public domain | W3C validator |