MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi7 Structured version   Visualization version   GIF version

Theorem anabsi7 671
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi7.1 (𝜓 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi7 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi7
StepHypRef Expression
1 anabsi7.1 . . 3 (𝜓 → ((𝜑𝜓) → 𝜒))
21anabsi6 670 . 2 ((𝜓𝜑) → 𝜒)
32ancoms 458 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  syldbl2  841  nelrdva  3659  elunii  4861  ordelord  6328  fvelrn  7009  onsucuni2  7764  fnfi  9087  prnmax  10886  relexpindlem  14970  opreu2reuALT  32456  ralssiun  37451  monotoddzz  43035  oddcomabszz  43036  flcidc  43262  fmul01  45679  fprodcnlem  45698  stoweidlem4  46101  stoweidlem20  46117  stoweidlem22  46119  stoweidlem27  46124  stoweidlem30  46127  stoweidlem51  46148  stoweidlem59  46156  fourierdlem21  46225  fourierdlem89  46292  fourierdlem90  46293  fourierdlem91  46294  fourierdlem104  46307
  Copyright terms: Public domain W3C validator