| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syldbl2 841 nelrdva 3665 elunii 4863 ordelord 6329 fvelrn 7010 onsucuni2 7767 fnfi 9092 prnmax 10889 relexpindlem 14970 opreu2reuALT 32425 ralssiun 37401 monotoddzz 42936 oddcomabszz 42937 flcidc 43163 fmul01 45581 fprodcnlem 45600 stoweidlem4 46005 stoweidlem20 46021 stoweidlem22 46023 stoweidlem27 46028 stoweidlem30 46031 stoweidlem51 46052 stoweidlem59 46060 fourierdlem21 46129 fourierdlem89 46196 fourierdlem90 46197 fourierdlem91 46198 fourierdlem104 46211 |
| Copyright terms: Public domain | W3C validator |