![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
2 | 1 | anabsi6 666 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | 2 | ancoms 459 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: nelrdva 3637 elunii 4756 ordelord 6095 fvelrn 6716 onsucuni2 7412 fnfi 8649 prnmax 10270 relexpindlem 14260 opreu2reuALT 29928 ralssiun 34240 monotoddzz 39046 oddcomabszz 39047 flcidc 39280 syldbl2 40025 fmul01 41424 fprodcnlem 41443 stoweidlem4 41853 stoweidlem20 41869 stoweidlem22 41871 stoweidlem27 41876 stoweidlem30 41879 stoweidlem51 41900 stoweidlem59 41908 fourierdlem21 41977 fourierdlem89 42044 fourierdlem90 42045 fourierdlem91 42046 fourierdlem104 42059 |
Copyright terms: Public domain | W3C validator |