| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syldbl2 841 nelrdva 3659 elunii 4861 ordelord 6328 fvelrn 7009 onsucuni2 7764 fnfi 9087 prnmax 10886 relexpindlem 14970 opreu2reuALT 32456 ralssiun 37451 monotoddzz 43035 oddcomabszz 43036 flcidc 43262 fmul01 45679 fprodcnlem 45698 stoweidlem4 46101 stoweidlem20 46117 stoweidlem22 46119 stoweidlem27 46124 stoweidlem30 46127 stoweidlem51 46148 stoweidlem59 46156 fourierdlem21 46225 fourierdlem89 46292 fourierdlem90 46293 fourierdlem91 46294 fourierdlem104 46307 |
| Copyright terms: Public domain | W3C validator |