Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
2 | 1 | anabsi6 667 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | 2 | ancoms 459 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: syldbl2 838 nelrdva 3640 elunii 4844 ordelord 6288 fvelrn 6954 onsucuni2 7681 fnfi 8964 prnmax 10751 relexpindlem 14774 opreu2reuALT 30825 ralssiun 35578 monotoddzz 40765 oddcomabszz 40766 flcidc 40999 fmul01 43121 fprodcnlem 43140 stoweidlem4 43545 stoweidlem20 43561 stoweidlem22 43563 stoweidlem27 43568 stoweidlem30 43571 stoweidlem51 43592 stoweidlem59 43600 fourierdlem21 43669 fourierdlem89 43736 fourierdlem90 43737 fourierdlem91 43738 fourierdlem104 43751 |
Copyright terms: Public domain | W3C validator |