MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi7 Structured version   Visualization version   GIF version

Theorem anabsi7 671
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi7.1 (𝜓 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi7 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi7
StepHypRef Expression
1 anabsi7.1 . . 3 (𝜓 → ((𝜑𝜓) → 𝜒))
21anabsi6 670 . 2 ((𝜓𝜑) → 𝜒)
32ancoms 458 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  syldbl2  841  nelrdva  3676  elunii  4876  ordelord  6354  fvelrn  7048  onsucuni2  7809  fnfi  9142  prnmax  10948  relexpindlem  15029  opreu2reuALT  32406  ralssiun  37395  monotoddzz  42932  oddcomabszz  42933  flcidc  43159  fmul01  45578  fprodcnlem  45597  stoweidlem4  46002  stoweidlem20  46018  stoweidlem22  46020  stoweidlem27  46025  stoweidlem30  46028  stoweidlem51  46049  stoweidlem59  46057  fourierdlem21  46126  fourierdlem89  46193  fourierdlem90  46194  fourierdlem91  46195  fourierdlem104  46208
  Copyright terms: Public domain W3C validator