Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
Ref | Expression |
---|---|
anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
2 | 1 | anabsi6 666 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: syldbl2 837 nelrdva 3635 elunii 4841 ordelord 6273 fvelrn 6936 onsucuni2 7656 fnfi 8925 prnmax 10682 relexpindlem 14702 opreu2reuALT 30726 ralssiun 35505 monotoddzz 40681 oddcomabszz 40682 flcidc 40915 fmul01 43011 fprodcnlem 43030 stoweidlem4 43435 stoweidlem20 43451 stoweidlem22 43453 stoweidlem27 43458 stoweidlem30 43461 stoweidlem51 43482 stoweidlem59 43490 fourierdlem21 43559 fourierdlem89 43626 fourierdlem90 43627 fourierdlem91 43628 fourierdlem104 43641 |
Copyright terms: Public domain | W3C validator |