MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabsi7 Structured version   Visualization version   GIF version

Theorem anabsi7 668
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
Hypothesis
Ref Expression
anabsi7.1 (𝜓 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
anabsi7 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabsi7
StepHypRef Expression
1 anabsi7.1 . . 3 (𝜓 → ((𝜑𝜓) → 𝜒))
21anabsi6 667 . 2 ((𝜓𝜑) → 𝜒)
32ancoms 459 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  syldbl2  838  nelrdva  3640  elunii  4844  ordelord  6288  fvelrn  6954  onsucuni2  7681  fnfi  8964  prnmax  10751  relexpindlem  14774  opreu2reuALT  30825  ralssiun  35578  monotoddzz  40765  oddcomabszz  40766  flcidc  40999  fmul01  43121  fprodcnlem  43140  stoweidlem4  43545  stoweidlem20  43561  stoweidlem22  43563  stoweidlem27  43568  stoweidlem30  43571  stoweidlem51  43592  stoweidlem59  43600  fourierdlem21  43669  fourierdlem89  43736  fourierdlem90  43737  fourierdlem91  43738  fourierdlem104  43751
  Copyright terms: Public domain W3C validator