| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syldbl2 841 nelrdva 3676 elunii 4876 ordelord 6354 fvelrn 7048 onsucuni2 7809 fnfi 9142 prnmax 10948 relexpindlem 15029 opreu2reuALT 32406 ralssiun 37395 monotoddzz 42932 oddcomabszz 42933 flcidc 43159 fmul01 45578 fprodcnlem 45597 stoweidlem4 46002 stoweidlem20 46018 stoweidlem22 46020 stoweidlem27 46025 stoweidlem30 46028 stoweidlem51 46049 stoweidlem59 46057 fourierdlem21 46126 fourierdlem89 46193 fourierdlem90 46194 fourierdlem91 46195 fourierdlem104 46208 |
| Copyright terms: Public domain | W3C validator |