| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabsi7 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsi7.1 | ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) |
| Ref | Expression |
|---|---|
| anabsi7 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabsi7.1 | . . 3 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | anabsi6 670 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | 2 | ancoms 458 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syldbl2 841 nelrdva 3673 elunii 4872 ordelord 6342 fvelrn 7030 onsucuni2 7789 fnfi 9119 prnmax 10924 relexpindlem 15005 opreu2reuALT 32456 ralssiun 37388 monotoddzz 42925 oddcomabszz 42926 flcidc 43152 fmul01 45571 fprodcnlem 45590 stoweidlem4 45995 stoweidlem20 46011 stoweidlem22 46013 stoweidlem27 46018 stoweidlem30 46021 stoweidlem51 46042 stoweidlem59 46050 fourierdlem21 46119 fourierdlem89 46186 fourierdlem90 46187 fourierdlem91 46188 fourierdlem104 46201 |
| Copyright terms: Public domain | W3C validator |