Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabss4 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) |
Ref | Expression |
---|---|
anabss4.1 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
anabss4 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabss4.1 | . . 3 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜓) → 𝜒) | |
2 | 1 | anabss1 666 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | 2 | ancoms 463 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 |
This theorem is referenced by: anabss7 673 ordtri3or 6194 |
Copyright terms: Public domain | W3C validator |