MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabss4 Structured version   Visualization version   GIF version

Theorem anabss4 667
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.)
Hypothesis
Ref Expression
anabss4.1 (((𝜓𝜑) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
anabss4 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabss4
StepHypRef Expression
1 anabss4.1 . . 3 (((𝜓𝜑) ∧ 𝜓) → 𝜒)
21anabss1 666 . 2 ((𝜓𝜑) → 𝜒)
32ancoms 463 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 401
This theorem is referenced by:  anabss7  673  ordtri3or  6194
  Copyright terms: Public domain W3C validator