MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabss1 Structured version   Visualization version   GIF version

Theorem anabss1 663
Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
Hypothesis
Ref Expression
anabss1.1 (((𝜑𝜓) ∧ 𝜑) → 𝜒)
Assertion
Ref Expression
anabss1 ((𝜑𝜓) → 𝜒)

Proof of Theorem anabss1
StepHypRef Expression
1 anabss1.1 . . 3 (((𝜑𝜓) ∧ 𝜑) → 𝜒)
21an32s 649 . 2 (((𝜑𝜑) ∧ 𝜓) → 𝜒)
32anabsan 662 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  anabss4  664  ordtri3or  6298  onfununi  8172  omordi  8397  oeoelem  8429  fzindd  12422  hashssdif  14127  nzss  41935  stirlinglem5  43619
  Copyright terms: Public domain W3C validator