Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabss5 | Structured version Visualization version GIF version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 10-May-1994.) (Proof shortened by Wolf Lammen, 1-Jan-2013.) |
Ref | Expression |
---|---|
anabss5.1 | ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
anabss5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabss5.1 | . . 3 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) | |
2 | 1 | anassrs 471 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
3 | 2 | anabsan 664 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: mp3an2ani 1465 sq01 13636 hashssdif 13823 eqbrrdv2 36439 expgrowthi 41410 bccbc 41422 hoidmvlelem2 43601 |
Copyright terms: Public domain | W3C validator |