|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > anabss5 | Structured version Visualization version GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 10-May-1994.) (Proof shortened by Wolf Lammen, 1-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| anabss5.1 | ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) | 
| Ref | Expression | 
|---|---|
| anabss5 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anabss5.1 | . . 3 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) | 
| 3 | 2 | anabsan 665 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: mp3an2ani 1470 sq01 14264 hashssdif 14451 eqbrrdv2 38864 expgrowthi 44352 bccbc 44364 hoidmvlelem2 46611 | 
| Copyright terms: Public domain | W3C validator |