MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Structured version   Visualization version   GIF version

Theorem ordtri3or 6291
Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 6289 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
2 ordirr 6277 . . . . . 6 (Ord (𝐴𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
31, 2syl 17 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
4 ianor 979 . . . . . 6 (¬ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
5 elin 3902 . . . . . . 7 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵))
6 incom 4134 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
76eleq1i 2829 . . . . . . . 8 ((𝐴𝐵) ∈ 𝐵 ↔ (𝐵𝐴) ∈ 𝐵)
87anbi2i 623 . . . . . . 7 (((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
95, 8bitri 274 . . . . . 6 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
104, 9xchnxbir 333 . . . . 5 (¬ (𝐴𝐵) ∈ (𝐴𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
113, 10sylib 217 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
12 inss1 4162 . . . . . . . . . 10 (𝐴𝐵) ⊆ 𝐴
13 ordsseleq 6288 . . . . . . . . . 10 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ⊆ 𝐴 ↔ ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴)))
1412, 13mpbii 232 . . . . . . . . 9 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
151, 14sylan 580 . . . . . . . 8 (((Ord 𝐴 ∧ Ord 𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1615anabss1 663 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1716ord 861 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 → (𝐴𝐵) = 𝐴))
18 df-ss 3903 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1917, 18syl6ibr 251 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴𝐴𝐵))
20 ordin 6289 . . . . . . . . 9 ((Ord 𝐵 ∧ Ord 𝐴) → Ord (𝐵𝐴))
21 inss1 4162 . . . . . . . . . 10 (𝐵𝐴) ⊆ 𝐵
22 ordsseleq 6288 . . . . . . . . . 10 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ⊆ 𝐵 ↔ ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵)))
2321, 22mpbii 232 . . . . . . . . 9 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2420, 23sylan 580 . . . . . . . 8 (((Ord 𝐵 ∧ Ord 𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2524anabss4 664 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2625ord 861 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵 → (𝐵𝐴) = 𝐵))
27 df-ss 3903 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
2826, 27syl6ibr 251 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵𝐵𝐴))
2919, 28orim12d 962 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → ((¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵) → (𝐴𝐵𝐵𝐴)))
3011, 29mpd 15 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
31 sspsstri 4036 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3230, 31sylib 217 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
33 ordelpss 6287 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
34 biidd 261 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
35 ordelpss 6287 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
3635ancoms 459 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
3733, 34, 363orbi123d 1434 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
3832, 37mpbird 256 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2106  cin 3885  wss 3886  wpss 3887  Ord word 6258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-tr 5191  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-ord 6262
This theorem is referenced by:  ordtri1  6292  epweon  7615  epweonOLD  7616  ordeleqon  7622  smo11  8182  smoord  8183  omopth2  8402  ttrcltr  9461  r111  9543  tcrank  9652  domtriomlem  10208  axdc3lem2  10217  zorn2lem6  10267  grur1  10586  poseq  33810  soseq  33811  nosepon  33876
  Copyright terms: Public domain W3C validator