MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Structured version   Visualization version   GIF version

Theorem ordtri3or 6367
Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 6365 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
2 ordirr 6353 . . . . . 6 (Ord (𝐴𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
31, 2syl 17 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
4 ianor 983 . . . . . 6 (¬ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
5 elin 3933 . . . . . . 7 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵))
6 incom 4175 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
76eleq1i 2820 . . . . . . . 8 ((𝐴𝐵) ∈ 𝐵 ↔ (𝐵𝐴) ∈ 𝐵)
87anbi2i 623 . . . . . . 7 (((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
95, 8bitri 275 . . . . . 6 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
104, 9xchnxbir 333 . . . . 5 (¬ (𝐴𝐵) ∈ (𝐴𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
113, 10sylib 218 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
12 inss1 4203 . . . . . . . . . 10 (𝐴𝐵) ⊆ 𝐴
13 ordsseleq 6364 . . . . . . . . . 10 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ⊆ 𝐴 ↔ ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴)))
1412, 13mpbii 233 . . . . . . . . 9 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
151, 14sylan 580 . . . . . . . 8 (((Ord 𝐴 ∧ Ord 𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1615anabss1 666 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1716ord 864 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 → (𝐴𝐵) = 𝐴))
18 dfss2 3935 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1917, 18imbitrrdi 252 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴𝐴𝐵))
20 ordin 6365 . . . . . . . . 9 ((Ord 𝐵 ∧ Ord 𝐴) → Ord (𝐵𝐴))
21 inss1 4203 . . . . . . . . . 10 (𝐵𝐴) ⊆ 𝐵
22 ordsseleq 6364 . . . . . . . . . 10 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ⊆ 𝐵 ↔ ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵)))
2321, 22mpbii 233 . . . . . . . . 9 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2420, 23sylan 580 . . . . . . . 8 (((Ord 𝐵 ∧ Ord 𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2524anabss4 667 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2625ord 864 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵 → (𝐵𝐴) = 𝐵))
27 dfss2 3935 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
2826, 27imbitrrdi 252 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵𝐵𝐴))
2919, 28orim12d 966 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → ((¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵) → (𝐴𝐵𝐵𝐴)))
3011, 29mpd 15 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
31 sspsstri 4071 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3230, 31sylib 218 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
33 ordelpss 6363 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
34 biidd 262 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
35 ordelpss 6363 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
3635ancoms 458 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
3733, 34, 363orbi123d 1437 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
3832, 37mpbird 257 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  cin 3916  wss 3917  wpss 3918  Ord word 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338
This theorem is referenced by:  ordtri1  6368  oneltri  6378  epweon  7754  epweonALT  7755  ordeleqon  7761  poseq  8140  soseq  8141  smo11  8336  smoord  8337  omopth2  8551  ttrcltr  9676  r111  9735  tcrank  9844  domtriomlem  10402  axdc3lem2  10411  zorn2lem6  10461  grur1  10780  nosepon  27584  addsproplem7  27889  negsproplem7  27947  mulsproplem13  28038  mulsproplem14  28039
  Copyright terms: Public domain W3C validator