MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Structured version   Visualization version   GIF version

Theorem ordtri3or 6283
Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 6281 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
2 ordirr 6269 . . . . . 6 (Ord (𝐴𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
31, 2syl 17 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
4 ianor 978 . . . . . 6 (¬ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
5 elin 3899 . . . . . . 7 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵))
6 incom 4131 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
76eleq1i 2829 . . . . . . . 8 ((𝐴𝐵) ∈ 𝐵 ↔ (𝐵𝐴) ∈ 𝐵)
87anbi2i 622 . . . . . . 7 (((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
95, 8bitri 274 . . . . . 6 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
104, 9xchnxbir 332 . . . . 5 (¬ (𝐴𝐵) ∈ (𝐴𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
113, 10sylib 217 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
12 inss1 4159 . . . . . . . . . 10 (𝐴𝐵) ⊆ 𝐴
13 ordsseleq 6280 . . . . . . . . . 10 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ⊆ 𝐴 ↔ ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴)))
1412, 13mpbii 232 . . . . . . . . 9 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
151, 14sylan 579 . . . . . . . 8 (((Ord 𝐴 ∧ Ord 𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1615anabss1 662 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1716ord 860 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 → (𝐴𝐵) = 𝐴))
18 df-ss 3900 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1917, 18syl6ibr 251 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴𝐴𝐵))
20 ordin 6281 . . . . . . . . 9 ((Ord 𝐵 ∧ Ord 𝐴) → Ord (𝐵𝐴))
21 inss1 4159 . . . . . . . . . 10 (𝐵𝐴) ⊆ 𝐵
22 ordsseleq 6280 . . . . . . . . . 10 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ⊆ 𝐵 ↔ ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵)))
2321, 22mpbii 232 . . . . . . . . 9 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2420, 23sylan 579 . . . . . . . 8 (((Ord 𝐵 ∧ Ord 𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2524anabss4 663 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2625ord 860 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵 → (𝐵𝐴) = 𝐵))
27 df-ss 3900 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
2826, 27syl6ibr 251 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵𝐵𝐴))
2919, 28orim12d 961 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → ((¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵) → (𝐴𝐵𝐵𝐴)))
3011, 29mpd 15 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
31 sspsstri 4033 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3230, 31sylib 217 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
33 ordelpss 6279 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
34 biidd 261 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
35 ordelpss 6279 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
3635ancoms 458 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
3733, 34, 363orbi123d 1433 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
3832, 37mpbird 256 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108  cin 3882  wss 3883  wpss 3884  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254
This theorem is referenced by:  ordtri1  6284  epweon  7603  ordeleqon  7609  smo11  8166  smoord  8167  omopth2  8377  r111  9464  tcrank  9573  domtriomlem  10129  axdc3lem2  10138  zorn2lem6  10188  grur1  10507  ttrcltr  33702  poseq  33729  soseq  33730  nosepon  33795
  Copyright terms: Public domain W3C validator