MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Structured version   Visualization version   GIF version

Theorem ordtri3or 6338
Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 6336 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
2 ordirr 6324 . . . . . 6 (Ord (𝐴𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
31, 2syl 17 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
4 ianor 983 . . . . . 6 (¬ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
5 elin 3913 . . . . . . 7 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵))
6 incom 4156 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
76eleq1i 2822 . . . . . . . 8 ((𝐴𝐵) ∈ 𝐵 ↔ (𝐵𝐴) ∈ 𝐵)
87anbi2i 623 . . . . . . 7 (((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
95, 8bitri 275 . . . . . 6 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
104, 9xchnxbir 333 . . . . 5 (¬ (𝐴𝐵) ∈ (𝐴𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
113, 10sylib 218 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
12 inss1 4184 . . . . . . . . . 10 (𝐴𝐵) ⊆ 𝐴
13 ordsseleq 6335 . . . . . . . . . 10 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ⊆ 𝐴 ↔ ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴)))
1412, 13mpbii 233 . . . . . . . . 9 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
151, 14sylan 580 . . . . . . . 8 (((Ord 𝐴 ∧ Ord 𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1615anabss1 666 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1716ord 864 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 → (𝐴𝐵) = 𝐴))
18 dfss2 3915 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1917, 18imbitrrdi 252 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴𝐴𝐵))
20 ordin 6336 . . . . . . . . 9 ((Ord 𝐵 ∧ Ord 𝐴) → Ord (𝐵𝐴))
21 inss1 4184 . . . . . . . . . 10 (𝐵𝐴) ⊆ 𝐵
22 ordsseleq 6335 . . . . . . . . . 10 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ⊆ 𝐵 ↔ ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵)))
2321, 22mpbii 233 . . . . . . . . 9 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2420, 23sylan 580 . . . . . . . 8 (((Ord 𝐵 ∧ Ord 𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2524anabss4 667 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2625ord 864 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵 → (𝐵𝐴) = 𝐵))
27 dfss2 3915 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
2826, 27imbitrrdi 252 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵𝐵𝐴))
2919, 28orim12d 966 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → ((¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵) → (𝐴𝐵𝐵𝐴)))
3011, 29mpd 15 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
31 sspsstri 4052 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3230, 31sylib 218 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
33 ordelpss 6334 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
34 biidd 262 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
35 ordelpss 6334 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
3635ancoms 458 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
3733, 34, 363orbi123d 1437 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
3832, 37mpbird 257 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  cin 3896  wss 3897  wpss 3898  Ord word 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309
This theorem is referenced by:  ordtri1  6339  oneltri  6349  epweon  7708  epweonALT  7709  ordeleqon  7715  poseq  8088  soseq  8089  smo11  8284  smoord  8285  omopth2  8499  ttrcltr  9606  r111  9668  tcrank  9777  domtriomlem  10333  axdc3lem2  10342  zorn2lem6  10392  grur1  10711  nosepon  27604  addsproplem7  27918  negsproplem7  27976  mulsproplem13  28067  mulsproplem14  28068
  Copyright terms: Public domain W3C validator