Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Structured version   Visualization version   GIF version

Theorem ordtri3or 6066
 Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 6064 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
2 ordirr 6052 . . . . . 6 (Ord (𝐴𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
31, 2syl 17 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
4 ianor 965 . . . . . 6 (¬ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
5 elin 4060 . . . . . . 7 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵))
6 incom 4069 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
76eleq1i 2858 . . . . . . . 8 ((𝐴𝐵) ∈ 𝐵 ↔ (𝐵𝐴) ∈ 𝐵)
87anbi2i 614 . . . . . . 7 (((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
95, 8bitri 267 . . . . . 6 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐵𝐴) ∈ 𝐵))
104, 9xchnxbir 325 . . . . 5 (¬ (𝐴𝐵) ∈ (𝐴𝐵) ↔ (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
113, 10sylib 210 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵))
12 inss1 4095 . . . . . . . . . 10 (𝐴𝐵) ⊆ 𝐴
13 ordsseleq 6063 . . . . . . . . . 10 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ⊆ 𝐴 ↔ ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴)))
1412, 13mpbii 225 . . . . . . . . 9 ((Ord (𝐴𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
151, 14sylan 572 . . . . . . . 8 (((Ord 𝐴 ∧ Ord 𝐵) ∧ Ord 𝐴) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1615anabss1 654 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵) ∈ 𝐴 ∨ (𝐴𝐵) = 𝐴))
1716ord 851 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴 → (𝐴𝐵) = 𝐴))
18 df-ss 3845 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
1917, 18syl6ibr 244 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴𝐵) ∈ 𝐴𝐴𝐵))
20 ordin 6064 . . . . . . . . 9 ((Ord 𝐵 ∧ Ord 𝐴) → Ord (𝐵𝐴))
21 inss1 4095 . . . . . . . . . 10 (𝐵𝐴) ⊆ 𝐵
22 ordsseleq 6063 . . . . . . . . . 10 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ⊆ 𝐵 ↔ ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵)))
2321, 22mpbii 225 . . . . . . . . 9 ((Ord (𝐵𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2420, 23sylan 572 . . . . . . . 8 (((Ord 𝐵 ∧ Ord 𝐴) ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2524anabss4 655 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐵𝐴) ∈ 𝐵 ∨ (𝐵𝐴) = 𝐵))
2625ord 851 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵 → (𝐵𝐴) = 𝐵))
27 df-ss 3845 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
2826, 27syl6ibr 244 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐵𝐴) ∈ 𝐵𝐵𝐴))
2919, 28orim12d 948 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → ((¬ (𝐴𝐵) ∈ 𝐴 ∨ ¬ (𝐵𝐴) ∈ 𝐵) → (𝐴𝐵𝐵𝐴)))
3011, 29mpd 15 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
31 sspsstri 3971 . . 3 ((𝐴𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3230, 31sylib 210 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
33 ordelpss 6062 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
34 biidd 254 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
35 ordelpss 6062 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
3635ancoms 451 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
3733, 34, 363orbi123d 1415 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
3832, 37mpbird 249 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 387   ∨ wo 834   ∨ w3o 1068   = wceq 1508   ∈ wcel 2051   ∩ cin 3830   ⊆ wss 3831   ⊊ wpss 3832  Ord word 6033 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pr 5190 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-tr 5036  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-ord 6037 This theorem is referenced by:  ordtri1  6067  epweon  7319  ordeleqon  7325  smo11  7811  smoord  7812  omopth2  8017  r111  9004  tcrank  9113  domtriomlem  9668  axdc3lem2  9677  zorn2lem6  9727  grur1  10046  poseq  32656  soseq  32657  nosepon  32733
 Copyright terms: Public domain W3C validator