MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 555
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 525 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imdistani  568  pwpw0  4777  sssn  4790  ordtr2  6377  tfis  7831  oeordi  8551  unblem3  9241  trcl  9681  frinsg  9704  pthisspthorcycl  29732  clwlkclwwlkfo  29938  h1datomi  31510  ballotlemfc0  34484  ballotlemfcc  34485  dfrdg4  35939  bj-sbsb  36825  bj-opelidres  37149  clsk1indlem3  44032  sbiota1  44423
  Copyright terms: Public domain W3C validator