Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anc2li | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
Ref | Expression |
---|---|
anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jctild 526 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imdistani 569 pwpw0 4746 sssn 4759 pwsnOLD 4832 wfisgOLD 6250 ordtr2 6303 tfis 7691 oeordi 8405 unblem3 9055 trcl 9495 frinsg 9519 clwlkclwwlkfo 28381 h1datomi 29951 ballotlemfc0 32467 ballotlemfcc 32468 pthisspthorcycl 33098 dfrdg4 34261 bj-sbsb 35028 bj-opelidres 35340 clsk1indlem3 41634 sbiota1 42033 |
Copyright terms: Public domain | W3C validator |