MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 555
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 525 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imdistani  568  pwpw0  4813  sssn  4826  wfisgOLD  6375  ordtr2  6428  tfis  7876  oeordi  8625  unblem3  9330  trcl  9768  frinsg  9791  pthisspthorcycl  29822  clwlkclwwlkfo  30028  h1datomi  31600  ballotlemfc0  34495  ballotlemfcc  34496  dfrdg4  35952  bj-sbsb  36838  bj-opelidres  37162  clsk1indlem3  44056  sbiota1  44453
  Copyright terms: Public domain W3C validator