| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anc2li | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
| Ref | Expression |
|---|---|
| anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jctild 525 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistani 568 pwpw0 4773 sssn 4786 ordtr2 6365 tfis 7811 oeordi 8528 unblem3 9217 trcl 9657 frinsg 9680 pthisspthorcycl 29782 clwlkclwwlkfo 29988 h1datomi 31560 ballotlemfc0 34477 ballotlemfcc 34478 dfrdg4 35932 bj-sbsb 36818 bj-opelidres 37142 clsk1indlem3 44025 sbiota1 44416 |
| Copyright terms: Public domain | W3C validator |