MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 556
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 526 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  imdistani  569  pwpw0  4746  sssn  4759  pwsnOLD  4832  wfisgOLD  6250  ordtr2  6303  tfis  7691  oeordi  8405  unblem3  9055  trcl  9495  frinsg  9519  clwlkclwwlkfo  28381  h1datomi  29951  ballotlemfc0  32467  ballotlemfcc  32468  pthisspthorcycl  33098  dfrdg4  34261  bj-sbsb  35028  bj-opelidres  35340  clsk1indlem3  41634  sbiota1  42033
  Copyright terms: Public domain W3C validator