MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 555
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 525 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imdistani  568  pwpw0  4789  sssn  4802  wfisgOLD  6343  ordtr2  6397  tfis  7850  oeordi  8599  unblem3  9302  trcl  9742  frinsg  9765  pthisspthorcycl  29784  clwlkclwwlkfo  29990  h1datomi  31562  ballotlemfc0  34525  ballotlemfcc  34526  dfrdg4  35969  bj-sbsb  36855  bj-opelidres  37179  clsk1indlem3  44067  sbiota1  44458
  Copyright terms: Public domain W3C validator