| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anc2li | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
| Ref | Expression |
|---|---|
| anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jctild 525 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistani 568 pwpw0 4777 sssn 4790 ordtr2 6377 tfis 7831 oeordi 8551 unblem3 9241 trcl 9681 frinsg 9704 pthisspthorcycl 29732 clwlkclwwlkfo 29938 h1datomi 31510 ballotlemfc0 34484 ballotlemfcc 34485 dfrdg4 35939 bj-sbsb 36825 bj-opelidres 37149 clsk1indlem3 44032 sbiota1 44423 |
| Copyright terms: Public domain | W3C validator |