![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anc2li | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
Ref | Expression |
---|---|
anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jctild 526 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imdistani 569 pwpw0 4816 sssn 4829 pwsnOLD 4901 wfisgOLD 6355 ordtr2 6408 tfis 7843 oeordi 8586 unblem3 9296 trcl 9722 frinsg 9745 clwlkclwwlkfo 29259 h1datomi 30829 ballotlemfc0 33486 ballotlemfcc 33487 pthisspthorcycl 34114 dfrdg4 34918 bj-sbsb 35710 bj-opelidres 36037 clsk1indlem3 42784 sbiota1 43183 |
Copyright terms: Public domain | W3C validator |