MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 555
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 525 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imdistani  568  pwpw0  4762  sssn  4775  ordtr2  6351  tfis  7785  oeordi  8502  unblem3  9178  trcl  9618  frinsg  9644  pthisspthorcycl  29780  clwlkclwwlkfo  29989  h1datomi  31561  ballotlemfc0  34506  ballotlemfcc  34507  dfrdg4  35993  bj-sbsb  36879  bj-opelidres  37203  clsk1indlem3  44084  sbiota1  44475
  Copyright terms: Public domain W3C validator