MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 556
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 526 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  imdistani  569  pwpw0  4816  sssn  4829  pwsnOLD  4901  wfisgOLD  6355  ordtr2  6408  tfis  7843  oeordi  8586  unblem3  9296  trcl  9722  frinsg  9745  clwlkclwwlkfo  29259  h1datomi  30829  ballotlemfc0  33486  ballotlemfcc  33487  pthisspthorcycl  34114  dfrdg4  34918  bj-sbsb  35710  bj-opelidres  36037  clsk1indlem3  42784  sbiota1  43183
  Copyright terms: Public domain W3C validator