| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anc2li | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
| Ref | Expression |
|---|---|
| anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jctild 525 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistani 568 pwpw0 4780 sssn 4793 ordtr2 6380 tfis 7834 oeordi 8554 unblem3 9248 trcl 9688 frinsg 9711 pthisspthorcycl 29739 clwlkclwwlkfo 29945 h1datomi 31517 ballotlemfc0 34491 ballotlemfcc 34492 dfrdg4 35946 bj-sbsb 36832 bj-opelidres 37156 clsk1indlem3 44039 sbiota1 44430 |
| Copyright terms: Public domain | W3C validator |