MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 555
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 525 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  imdistani  568  pwpw0  4838  sssn  4851  wfisgOLD  6386  ordtr2  6439  tfis  7892  oeordi  8643  unblem3  9358  trcl  9797  frinsg  9820  clwlkclwwlkfo  30041  h1datomi  31613  ballotlemfc0  34457  ballotlemfcc  34458  pthisspthorcycl  35096  dfrdg4  35915  bj-sbsb  36803  bj-opelidres  37127  clsk1indlem3  44005  sbiota1  44403
  Copyright terms: Public domain W3C validator