MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anc2li Structured version   Visualization version   GIF version

Theorem anc2li 555
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2li (𝜑 → (𝜓 → (𝜑𝜒)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (𝜑 → (𝜓𝜒))
2 id 22 . 2 (𝜑𝜑)
31, 2jctild 525 1 (𝜑 → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  imdistani  568  pwpw0  4812  sssn  4825  wfisgOLD  6354  ordtr2  6407  tfis  7853  oeordi  8601  unblem3  9315  trcl  9745  frinsg  9768  clwlkclwwlkfo  29812  h1datomi  31384  ballotlemfc0  34106  ballotlemfcc  34107  pthisspthorcycl  34732  dfrdg4  35541  bj-sbsb  36308  bj-opelidres  36634  clsk1indlem3  43467  sbiota1  43865
  Copyright terms: Public domain W3C validator