| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anc2li | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
| Ref | Expression |
|---|---|
| anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jctild 525 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: imdistani 568 pwpw0 4762 sssn 4775 ordtr2 6351 tfis 7785 oeordi 8502 unblem3 9178 trcl 9618 frinsg 9644 pthisspthorcycl 29780 clwlkclwwlkfo 29989 h1datomi 31561 ballotlemfc0 34506 ballotlemfcc 34507 dfrdg4 35993 bj-sbsb 36879 bj-opelidres 37203 clsk1indlem3 44084 sbiota1 44475 |
| Copyright terms: Public domain | W3C validator |