| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssorduni | Structured version Visualization version GIF version | ||
| Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssorduni | ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 4865 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 2 | ssel 3931 | . . . . . . . . 9 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → 𝑦 ∈ On)) | |
| 3 | onelss 6353 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
| 4 | 2, 3 | syl6 35 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦))) |
| 5 | anc2r 554 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) |
| 7 | ssuni 4886 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ⊆ ∪ 𝐴) | |
| 8 | 6, 7 | syl8 76 | . . . . . 6 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴))) |
| 9 | 8 | rexlimdv 3128 | . . . . 5 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴)) |
| 10 | 1, 9 | biimtrid 242 | . . . 4 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ⊆ ∪ 𝐴)) |
| 11 | 10 | ralrimiv 3120 | . . 3 ⊢ (𝐴 ⊆ On → ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) |
| 12 | dftr3 5207 | . . 3 ⊢ (Tr ∪ 𝐴 ↔ ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) | |
| 13 | 11, 12 | sylibr 234 | . 2 ⊢ (𝐴 ⊆ On → Tr ∪ 𝐴) |
| 14 | onelon 6336 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
| 15 | 14 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
| 16 | 2, 15 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ∈ On))) |
| 17 | 16 | rexlimdv 3128 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
| 18 | 1, 17 | biimtrid 242 | . . 3 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ On)) |
| 19 | 18 | ssrdv 3943 | . 2 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ⊆ On) |
| 20 | ordon 7717 | . . 3 ⊢ Ord On | |
| 21 | trssord 6328 | . . . 4 ⊢ ((Tr ∪ 𝐴 ∧ ∪ 𝐴 ⊆ On ∧ Ord On) → Ord ∪ 𝐴) | |
| 22 | 21 | 3exp 1119 | . . 3 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → (Ord On → Ord ∪ 𝐴))) |
| 23 | 20, 22 | mpii 46 | . 2 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → Ord ∪ 𝐴)) |
| 24 | 13, 19, 23 | sylc 65 | 1 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∪ cuni 4861 Tr wtr 5202 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: ssonuni 7720 ssonprc 7727 orduni 7729 onsucuni 7767 limuni3 7792 onfununi 8271 tfrlem8 8313 cofon1 8597 cofon2 8598 naddcllem 8601 onssnum 9953 unialeph 10014 cfslbn 10180 hsmexlem1 10339 inaprc 10749 bdayimaon 27621 noetasuplem4 27664 noetainflem4 27668 noeta2 27713 etasslt2 27743 scutbdaybnd2lim 27746 onsupneqmaxlim0 43200 onsupnmax 43204 onsupsucismax 43255 onsucunifi 43346 |
| Copyright terms: Public domain | W3C validator |