MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssorduni Structured version   Visualization version   GIF version

Theorem ssorduni 7799
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ssorduni (𝐴 ⊆ On → Ord 𝐴)

Proof of Theorem ssorduni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4911 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
2 ssel 3977 . . . . . . . . 9 (𝐴 ⊆ On → (𝑦𝐴𝑦 ∈ On))
3 onelss 6426 . . . . . . . . 9 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
42, 3syl6 35 . . . . . . . 8 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥𝑦)))
5 anc2r 554 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑦𝑥𝑦)) → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
64, 5syl 17 . . . . . . 7 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
7 ssuni 4932 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥 𝐴)
86, 7syl8 76 . . . . . 6 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 𝐴)))
98rexlimdv 3153 . . . . 5 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 𝐴))
101, 9biimtrid 242 . . . 4 (𝐴 ⊆ On → (𝑥 𝐴𝑥 𝐴))
1110ralrimiv 3145 . . 3 (𝐴 ⊆ On → ∀𝑥 𝐴𝑥 𝐴)
12 dftr3 5265 . . 3 (Tr 𝐴 ↔ ∀𝑥 𝐴𝑥 𝐴)
1311, 12sylibr 234 . 2 (𝐴 ⊆ On → Tr 𝐴)
14 onelon 6409 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
1514ex 412 . . . . . 6 (𝑦 ∈ On → (𝑥𝑦𝑥 ∈ On))
162, 15syl6 35 . . . . 5 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 ∈ On)))
1716rexlimdv 3153 . . . 4 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 ∈ On))
181, 17biimtrid 242 . . 3 (𝐴 ⊆ On → (𝑥 𝐴𝑥 ∈ On))
1918ssrdv 3989 . 2 (𝐴 ⊆ On → 𝐴 ⊆ On)
20 ordon 7797 . . 3 Ord On
21 trssord 6401 . . . 4 ((Tr 𝐴 𝐴 ⊆ On ∧ Ord On) → Ord 𝐴)
22213exp 1120 . . 3 (Tr 𝐴 → ( 𝐴 ⊆ On → (Ord On → Ord 𝐴)))
2320, 22mpii 46 . 2 (Tr 𝐴 → ( 𝐴 ⊆ On → Ord 𝐴))
2413, 19, 23sylc 65 1 (𝐴 ⊆ On → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3061  wrex 3070  wss 3951   cuni 4907  Tr wtr 5259  Ord word 6383  Oncon0 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388
This theorem is referenced by:  ssonuni  7800  ssonprc  7807  orduni  7809  onsucuni  7848  limuni3  7873  onfununi  8381  tfrlem8  8424  cofon1  8710  cofon2  8711  naddcllem  8714  onssnum  10080  unialeph  10141  cfslbn  10307  hsmexlem1  10466  inaprc  10876  bdayimaon  27738  noetasuplem4  27781  noetainflem4  27785  noeta2  27829  etasslt2  27859  scutbdaybnd2lim  27862  onsupneqmaxlim0  43236  onsupnmax  43240  onsupsucismax  43292  onsucunifi  43383
  Copyright terms: Public domain W3C validator