![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssorduni | Structured version Visualization version GIF version |
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ssorduni | ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4935 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
2 | ssel 4002 | . . . . . . . . 9 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → 𝑦 ∈ On)) | |
3 | onelss 6437 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
4 | 2, 3 | syl6 35 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦))) |
5 | anc2r 554 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) |
7 | ssuni 4956 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ⊆ ∪ 𝐴) | |
8 | 6, 7 | syl8 76 | . . . . . 6 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴))) |
9 | 8 | rexlimdv 3159 | . . . . 5 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴)) |
10 | 1, 9 | biimtrid 242 | . . . 4 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ⊆ ∪ 𝐴)) |
11 | 10 | ralrimiv 3151 | . . 3 ⊢ (𝐴 ⊆ On → ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) |
12 | dftr3 5289 | . . 3 ⊢ (Tr ∪ 𝐴 ↔ ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) | |
13 | 11, 12 | sylibr 234 | . 2 ⊢ (𝐴 ⊆ On → Tr ∪ 𝐴) |
14 | onelon 6420 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
15 | 14 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
16 | 2, 15 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ∈ On))) |
17 | 16 | rexlimdv 3159 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
18 | 1, 17 | biimtrid 242 | . . 3 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ On)) |
19 | 18 | ssrdv 4014 | . 2 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ⊆ On) |
20 | ordon 7812 | . . 3 ⊢ Ord On | |
21 | trssord 6412 | . . . 4 ⊢ ((Tr ∪ 𝐴 ∧ ∪ 𝐴 ⊆ On ∧ Ord On) → Ord ∪ 𝐴) | |
22 | 21 | 3exp 1119 | . . 3 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → (Ord On → Ord ∪ 𝐴))) |
23 | 20, 22 | mpii 46 | . 2 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → Ord ∪ 𝐴)) |
24 | 13, 19, 23 | sylc 65 | 1 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∪ cuni 4931 Tr wtr 5283 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: ssonuni 7815 ssonprc 7823 orduni 7825 onsucuni 7864 limuni3 7889 onfununi 8397 tfrlem8 8440 cofon1 8728 cofon2 8729 naddcllem 8732 onssnum 10109 unialeph 10170 cfslbn 10336 hsmexlem1 10495 inaprc 10905 bdayimaon 27756 noetasuplem4 27799 noetainflem4 27803 noeta2 27847 etasslt2 27877 scutbdaybnd2lim 27880 onsupneqmaxlim0 43185 onsupnmax 43189 onsupsucismax 43241 onsucunifi 43332 |
Copyright terms: Public domain | W3C validator |