MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssorduni Structured version   Visualization version   GIF version

Theorem ssorduni 7758
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ssorduni (𝐴 ⊆ On → Ord 𝐴)

Proof of Theorem ssorduni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4878 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
2 ssel 3943 . . . . . . . . 9 (𝐴 ⊆ On → (𝑦𝐴𝑦 ∈ On))
3 onelss 6377 . . . . . . . . 9 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
42, 3syl6 35 . . . . . . . 8 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥𝑦)))
5 anc2r 554 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑦𝑥𝑦)) → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
64, 5syl 17 . . . . . . 7 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
7 ssuni 4899 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥 𝐴)
86, 7syl8 76 . . . . . 6 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 𝐴)))
98rexlimdv 3133 . . . . 5 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 𝐴))
101, 9biimtrid 242 . . . 4 (𝐴 ⊆ On → (𝑥 𝐴𝑥 𝐴))
1110ralrimiv 3125 . . 3 (𝐴 ⊆ On → ∀𝑥 𝐴𝑥 𝐴)
12 dftr3 5223 . . 3 (Tr 𝐴 ↔ ∀𝑥 𝐴𝑥 𝐴)
1311, 12sylibr 234 . 2 (𝐴 ⊆ On → Tr 𝐴)
14 onelon 6360 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
1514ex 412 . . . . . 6 (𝑦 ∈ On → (𝑥𝑦𝑥 ∈ On))
162, 15syl6 35 . . . . 5 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 ∈ On)))
1716rexlimdv 3133 . . . 4 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 ∈ On))
181, 17biimtrid 242 . . 3 (𝐴 ⊆ On → (𝑥 𝐴𝑥 ∈ On))
1918ssrdv 3955 . 2 (𝐴 ⊆ On → 𝐴 ⊆ On)
20 ordon 7756 . . 3 Ord On
21 trssord 6352 . . . 4 ((Tr 𝐴 𝐴 ⊆ On ∧ Ord On) → Ord 𝐴)
22213exp 1119 . . 3 (Tr 𝐴 → ( 𝐴 ⊆ On → (Ord On → Ord 𝐴)))
2320, 22mpii 46 . 2 (Tr 𝐴 → ( 𝐴 ⊆ On → Ord 𝐴))
2413, 19, 23sylc 65 1 (𝐴 ⊆ On → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054  wss 3917   cuni 4874  Tr wtr 5217  Ord word 6334  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by:  ssonuni  7759  ssonprc  7766  orduni  7768  onsucuni  7806  limuni3  7831  onfununi  8313  tfrlem8  8355  cofon1  8639  cofon2  8640  naddcllem  8643  onssnum  10000  unialeph  10061  cfslbn  10227  hsmexlem1  10386  inaprc  10796  bdayimaon  27612  noetasuplem4  27655  noetainflem4  27659  noeta2  27703  etasslt2  27733  scutbdaybnd2lim  27736  onsupneqmaxlim0  43220  onsupnmax  43224  onsupsucismax  43275  onsucunifi  43366
  Copyright terms: Public domain W3C validator