Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssorduni | Structured version Visualization version GIF version |
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ssorduni | ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4843 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
2 | ssel 3914 | . . . . . . . . 9 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → 𝑦 ∈ On)) | |
3 | onelss 6308 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
4 | 2, 3 | syl6 35 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦))) |
5 | anc2r 555 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) |
7 | ssuni 4866 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ⊆ ∪ 𝐴) | |
8 | 6, 7 | syl8 76 | . . . . . 6 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴))) |
9 | 8 | rexlimdv 3212 | . . . . 5 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴)) |
10 | 1, 9 | syl5bi 241 | . . . 4 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ⊆ ∪ 𝐴)) |
11 | 10 | ralrimiv 3102 | . . 3 ⊢ (𝐴 ⊆ On → ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) |
12 | dftr3 5195 | . . 3 ⊢ (Tr ∪ 𝐴 ↔ ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ (𝐴 ⊆ On → Tr ∪ 𝐴) |
14 | onelon 6291 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
15 | 14 | ex 413 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
16 | 2, 15 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ∈ On))) |
17 | 16 | rexlimdv 3212 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
18 | 1, 17 | syl5bi 241 | . . 3 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ On)) |
19 | 18 | ssrdv 3927 | . 2 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ⊆ On) |
20 | ordon 7627 | . . 3 ⊢ Ord On | |
21 | trssord 6283 | . . . 4 ⊢ ((Tr ∪ 𝐴 ∧ ∪ 𝐴 ⊆ On ∧ Ord On) → Ord ∪ 𝐴) | |
22 | 21 | 3exp 1118 | . . 3 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → (Ord On → Ord ∪ 𝐴))) |
23 | 20, 22 | mpii 46 | . 2 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → Ord ∪ 𝐴)) |
24 | 13, 19, 23 | sylc 65 | 1 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∪ cuni 4839 Tr wtr 5191 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: ssonuni 7630 ssonprc 7637 orduni 7639 onsucuni 7675 limuni3 7699 onfununi 8172 tfrlem8 8215 onssnum 9796 unialeph 9857 cfslbn 10023 hsmexlem1 10182 inaprc 10592 naddcllem 33831 bdayimaon 33896 noetasuplem4 33939 noetainflem4 33943 noeta2 33979 etasslt2 34008 scutbdaybnd2lim 34011 |
Copyright terms: Public domain | W3C validator |