MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssorduni Structured version   Visualization version   GIF version

Theorem ssorduni 7480
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ssorduni (𝐴 ⊆ On → Ord 𝐴)

Proof of Theorem ssorduni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4804 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
2 ssel 3908 . . . . . . . . 9 (𝐴 ⊆ On → (𝑦𝐴𝑦 ∈ On))
3 onelss 6201 . . . . . . . . 9 (𝑦 ∈ On → (𝑥𝑦𝑥𝑦))
42, 3syl6 35 . . . . . . . 8 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥𝑦)))
5 anc2r 558 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑦𝑥𝑦)) → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
64, 5syl 17 . . . . . . 7 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦 → (𝑥𝑦𝑦𝐴))))
7 ssuni 4825 . . . . . . 7 ((𝑥𝑦𝑦𝐴) → 𝑥 𝐴)
86, 7syl8 76 . . . . . 6 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 𝐴)))
98rexlimdv 3242 . . . . 5 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 𝐴))
101, 9syl5bi 245 . . . 4 (𝐴 ⊆ On → (𝑥 𝐴𝑥 𝐴))
1110ralrimiv 3148 . . 3 (𝐴 ⊆ On → ∀𝑥 𝐴𝑥 𝐴)
12 dftr3 5140 . . 3 (Tr 𝐴 ↔ ∀𝑥 𝐴𝑥 𝐴)
1311, 12sylibr 237 . 2 (𝐴 ⊆ On → Tr 𝐴)
14 onelon 6184 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
1514ex 416 . . . . . 6 (𝑦 ∈ On → (𝑥𝑦𝑥 ∈ On))
162, 15syl6 35 . . . . 5 (𝐴 ⊆ On → (𝑦𝐴 → (𝑥𝑦𝑥 ∈ On)))
1716rexlimdv 3242 . . . 4 (𝐴 ⊆ On → (∃𝑦𝐴 𝑥𝑦𝑥 ∈ On))
181, 17syl5bi 245 . . 3 (𝐴 ⊆ On → (𝑥 𝐴𝑥 ∈ On))
1918ssrdv 3921 . 2 (𝐴 ⊆ On → 𝐴 ⊆ On)
20 ordon 7478 . . 3 Ord On
21 trssord 6176 . . . 4 ((Tr 𝐴 𝐴 ⊆ On ∧ Ord On) → Ord 𝐴)
22213exp 1116 . . 3 (Tr 𝐴 → ( 𝐴 ⊆ On → (Ord On → Ord 𝐴)))
2320, 22mpii 46 . 2 (Tr 𝐴 → ( 𝐴 ⊆ On → Ord 𝐴))
2413, 19, 23sylc 65 1 (𝐴 ⊆ On → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wral 3106  wrex 3107  wss 3881   cuni 4800  Tr wtr 5136  Ord word 6158  Oncon0 6159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163
This theorem is referenced by:  ssonuni  7481  ssonprc  7487  orduni  7489  onsucuni  7523  limuni3  7547  onfununi  7961  tfrlem8  8003  onssnum  9451  unialeph  9512  cfslbn  9678  hsmexlem1  9837  inaprc  10247  bdayimaon  33310  nosupbday  33318  noetalem3  33332  noetalem4  33333
  Copyright terms: Public domain W3C validator