Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssorduni | Structured version Visualization version GIF version |
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
ssorduni | ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4802 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
2 | ssel 3885 | . . . . . . . . 9 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → 𝑦 ∈ On)) | |
3 | onelss 6211 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) | |
4 | 2, 3 | syl6 35 | . . . . . . . 8 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦))) |
5 | anc2r 558 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → (𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴)))) |
7 | ssuni 4825 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ⊆ ∪ 𝐴) | |
8 | 6, 7 | syl8 76 | . . . . . 6 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴))) |
9 | 8 | rexlimdv 3207 | . . . . 5 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝐴)) |
10 | 1, 9 | syl5bi 245 | . . . 4 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ⊆ ∪ 𝐴)) |
11 | 10 | ralrimiv 3112 | . . 3 ⊢ (𝐴 ⊆ On → ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) |
12 | dftr3 5142 | . . 3 ⊢ (Tr ∪ 𝐴 ↔ ∀𝑥 ∈ ∪ 𝐴𝑥 ⊆ ∪ 𝐴) | |
13 | 11, 12 | sylibr 237 | . 2 ⊢ (𝐴 ⊆ On → Tr ∪ 𝐴) |
14 | onelon 6194 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
15 | 14 | ex 416 | . . . . . 6 ⊢ (𝑦 ∈ On → (𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
16 | 2, 15 | syl6 35 | . . . . 5 ⊢ (𝐴 ⊆ On → (𝑦 ∈ 𝐴 → (𝑥 ∈ 𝑦 → 𝑥 ∈ On))) |
17 | 16 | rexlimdv 3207 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → 𝑥 ∈ On)) |
18 | 1, 17 | syl5bi 245 | . . 3 ⊢ (𝐴 ⊆ On → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ On)) |
19 | 18 | ssrdv 3898 | . 2 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ⊆ On) |
20 | ordon 7497 | . . 3 ⊢ Ord On | |
21 | trssord 6186 | . . . 4 ⊢ ((Tr ∪ 𝐴 ∧ ∪ 𝐴 ⊆ On ∧ Ord On) → Ord ∪ 𝐴) | |
22 | 21 | 3exp 1116 | . . 3 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → (Ord On → Ord ∪ 𝐴))) |
23 | 20, 22 | mpii 46 | . 2 ⊢ (Tr ∪ 𝐴 → (∪ 𝐴 ⊆ On → Ord ∪ 𝐴)) |
24 | 13, 19, 23 | sylc 65 | 1 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ⊆ wss 3858 ∪ cuni 4798 Tr wtr 5138 Ord word 6168 Oncon0 6169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-tr 5139 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-ord 6172 df-on 6173 |
This theorem is referenced by: ssonuni 7500 ssonprc 7506 orduni 7508 onsucuni 7542 limuni3 7566 onfununi 7988 tfrlem8 8030 onssnum 9500 unialeph 9561 cfslbn 9727 hsmexlem1 9886 inaprc 10296 bdayimaon 33461 noetasuplem4 33504 noetainflem4 33508 noeta2 33544 etasslt2 33569 scutbdaybnd2lim 33572 |
Copyright terms: Public domain | W3C validator |