Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > annotanannot | Structured version Visualization version GIF version |
Description: A conjunction with a negated conjunction. (Contributed by AV, 8-Mar-2022.) (Proof shortened by Wolf Lammen, 1-Apr-2022.) |
Ref | Expression |
---|---|
annotanannot | ⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 532 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | bicomd 226 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
3 | 2 | notbid 321 | . 2 ⊢ (𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ ¬ 𝜓)) |
4 | 3 | pm5.32i 578 | 1 ⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: suppcoss 7888 clwwlknclwwlkdif 27878 0nn0m1nnn0 32601 |
Copyright terms: Public domain | W3C validator |