MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  annotanannot Structured version   Visualization version   GIF version

Theorem annotanannot 833
Description: A conjunction with a negated conjunction. (Contributed by AV, 8-Mar-2022.) (Proof shortened by Wolf Lammen, 1-Apr-2022.)
Assertion
Ref Expression
annotanannot ((𝜑 ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem annotanannot
StepHypRef Expression
1 ibar 532 . . . 4 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21bicomd 226 . . 3 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
32notbid 321 . 2 (𝜑 → (¬ (𝜑𝜓) ↔ ¬ 𝜓))
43pm5.32i 578 1 ((𝜑 ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ∧ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  suppcoss  7888  clwwlknclwwlkdif  27878  0nn0m1nnn0  32601
  Copyright terms: Public domain W3C validator