| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > annotanannot | Structured version Visualization version GIF version | ||
| Description: A conjunction with a negated conjunction. (Contributed by AV, 8-Mar-2022.) (Proof shortened by Wolf Lammen, 1-Apr-2022.) |
| Ref | Expression |
|---|---|
| annotanannot | ⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ ¬ 𝜓)) |
| 4 | 3 | pm5.32i 574 | 1 ⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: suppcoss 8215 clwwlknclwwlkdif 29945 0nn0m1nnn0 35059 |
| Copyright terms: Public domain | W3C validator |