MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppcoss Structured version   Visualization version   GIF version

Theorem suppcoss 8143
Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv 8138, which has a sethood condition on 𝐴 instead of 𝐵. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
suppcoss.f (𝜑𝐹 Fn 𝐴)
suppcoss.g (𝜑𝐺:𝐵𝐴)
suppcoss.b (𝜑𝐵𝑊)
suppcoss.y (𝜑𝑌𝑉)
suppcoss.1 (𝜑 → (𝐹𝑌) = 𝑍)
Assertion
Ref Expression
suppcoss (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))

Proof of Theorem suppcoss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 suppcoss.f . . . 4 (𝜑𝐹 Fn 𝐴)
2 dffn3 6686 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 217 . . 3 (𝜑𝐹:𝐴⟶ran 𝐹)
4 suppcoss.g . . 3 (𝜑𝐺:𝐵𝐴)
53, 4fcod 6699 . 2 (𝜑 → (𝐹𝐺):𝐵⟶ran 𝐹)
6 eldif 3923 . . . . 5 (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)))
74ffnd 6674 . . . . . . . . 9 (𝜑𝐺 Fn 𝐵)
8 suppcoss.b . . . . . . . . 9 (𝜑𝐵𝑊)
9 suppcoss.y . . . . . . . . 9 (𝜑𝑌𝑉)
10 elsuppfn 8107 . . . . . . . . 9 ((𝐺 Fn 𝐵𝐵𝑊𝑌𝑉) → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
117, 8, 9, 10syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1211notbid 317 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑌) ↔ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1312anbi2d 629 . . . . . 6 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌))))
14 annotanannot 833 . . . . . 6 ((𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌))
1513, 14bitrdi 286 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
166, 15bitrid 282 . . . 4 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
17 nne 2943 . . . . . 6 (¬ (𝐺𝑘) ≠ 𝑌 ↔ (𝐺𝑘) = 𝑌)
1817anbi2i 623 . . . . 5 ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌))
194adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝐺:𝐵𝐴)
20 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝑘𝐵)
2119, 20fvco3d 6946 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
22 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐺𝑘) = 𝑌)
2322fveq2d 6851 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹‘(𝐺𝑘)) = (𝐹𝑌))
24 suppcoss.1 . . . . . . . 8 (𝜑 → (𝐹𝑌) = 𝑍)
2524adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹𝑌) = 𝑍)
2621, 23, 253eqtrd 2775 . . . . . 6 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍)
2726ex 413 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ (𝐺𝑘) = 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2818, 27biimtrid 241 . . . 4 (𝜑 → ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2916, 28sylbid 239 . . 3 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍))
3029imp 407 . 2 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌))) → ((𝐹𝐺)‘𝑘) = 𝑍)
315, 30suppss 8130 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  cdif 3910  wss 3913  ran crn 5639  ccom 5642   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362   supp csupp 8097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-supp 8098
This theorem is referenced by:  mplsubglem  21442  mhpinvcl  21579
  Copyright terms: Public domain W3C validator