MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppcoss Structured version   Visualization version   GIF version

Theorem suppcoss 8186
Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv 8181, which has a sethood condition on 𝐴 instead of 𝐵. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
suppcoss.f (𝜑𝐹 Fn 𝐴)
suppcoss.g (𝜑𝐺:𝐵𝐴)
suppcoss.b (𝜑𝐵𝑊)
suppcoss.y (𝜑𝑌𝑉)
suppcoss.1 (𝜑 → (𝐹𝑌) = 𝑍)
Assertion
Ref Expression
suppcoss (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))

Proof of Theorem suppcoss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 suppcoss.f . . . 4 (𝜑𝐹 Fn 𝐴)
2 dffn3 6700 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 218 . . 3 (𝜑𝐹:𝐴⟶ran 𝐹)
4 suppcoss.g . . 3 (𝜑𝐺:𝐵𝐴)
53, 4fcod 6713 . 2 (𝜑 → (𝐹𝐺):𝐵⟶ran 𝐹)
6 eldif 3924 . . . . 5 (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)))
74ffnd 6689 . . . . . . . . 9 (𝜑𝐺 Fn 𝐵)
8 suppcoss.b . . . . . . . . 9 (𝜑𝐵𝑊)
9 suppcoss.y . . . . . . . . 9 (𝜑𝑌𝑉)
10 elsuppfn 8149 . . . . . . . . 9 ((𝐺 Fn 𝐵𝐵𝑊𝑌𝑉) → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
117, 8, 9, 10syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1211notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑌) ↔ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1312anbi2d 630 . . . . . 6 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌))))
14 annotanannot 834 . . . . . 6 ((𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌))
1513, 14bitrdi 287 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
166, 15bitrid 283 . . . 4 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
17 nne 2929 . . . . . 6 (¬ (𝐺𝑘) ≠ 𝑌 ↔ (𝐺𝑘) = 𝑌)
1817anbi2i 623 . . . . 5 ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌))
194adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝐺:𝐵𝐴)
20 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝑘𝐵)
2119, 20fvco3d 6961 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
22 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐺𝑘) = 𝑌)
2322fveq2d 6862 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹‘(𝐺𝑘)) = (𝐹𝑌))
24 suppcoss.1 . . . . . . . 8 (𝜑 → (𝐹𝑌) = 𝑍)
2524adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹𝑌) = 𝑍)
2621, 23, 253eqtrd 2768 . . . . . 6 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍)
2726ex 412 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ (𝐺𝑘) = 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2818, 27biimtrid 242 . . . 4 (𝜑 → ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2916, 28sylbid 240 . . 3 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍))
3029imp 406 . 2 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌))) → ((𝐹𝐺)‘𝑘) = 𝑍)
315, 30suppss 8173 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  wss 3914  ran crn 5639  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387   supp csupp 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140
This theorem is referenced by:  mplsubglem  21908  mhpinvcl  22039
  Copyright terms: Public domain W3C validator