MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppcoss Structured version   Visualization version   GIF version

Theorem suppcoss 7874
Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv 7869, which has a sethood condition on 𝐴 instead of 𝐵. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
suppcoss.f (𝜑𝐹 Fn 𝐴)
suppcoss.g (𝜑𝐺:𝐵𝐴)
suppcoss.b (𝜑𝐵𝑊)
suppcoss.y (𝜑𝑌𝑉)
suppcoss.1 (𝜑 → (𝐹𝑌) = 𝑍)
Assertion
Ref Expression
suppcoss (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))

Proof of Theorem suppcoss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 suppcoss.f . . . 4 (𝜑𝐹 Fn 𝐴)
2 dffn3 6503 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 221 . . 3 (𝜑𝐹:𝐴⟶ran 𝐹)
4 suppcoss.g . . 3 (𝜑𝐺:𝐵𝐴)
53, 4fcod 6510 . 2 (𝜑 → (𝐹𝐺):𝐵⟶ran 𝐹)
6 eldif 3864 . . . . 5 (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)))
74ffnd 6492 . . . . . . . . 9 (𝜑𝐺 Fn 𝐵)
8 suppcoss.b . . . . . . . . 9 (𝜑𝐵𝑊)
9 suppcoss.y . . . . . . . . 9 (𝜑𝑌𝑉)
10 elsuppfn 7838 . . . . . . . . 9 ((𝐺 Fn 𝐵𝐵𝑊𝑌𝑉) → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
117, 8, 9, 10syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1211notbid 322 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑌) ↔ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1312anbi2d 632 . . . . . 6 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌))))
14 annotanannot 834 . . . . . 6 ((𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌))
1513, 14bitrdi 290 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
166, 15syl5bb 286 . . . 4 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
17 nne 2953 . . . . . 6 (¬ (𝐺𝑘) ≠ 𝑌 ↔ (𝐺𝑘) = 𝑌)
1817anbi2i 626 . . . . 5 ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌))
194adantr 485 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝐺:𝐵𝐴)
20 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝑘𝐵)
2119, 20fvco3d 6745 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
22 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐺𝑘) = 𝑌)
2322fveq2d 6655 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹‘(𝐺𝑘)) = (𝐹𝑌))
24 suppcoss.1 . . . . . . . 8 (𝜑 → (𝐹𝑌) = 𝑍)
2524adantr 485 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹𝑌) = 𝑍)
2621, 23, 253eqtrd 2798 . . . . . 6 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍)
2726ex 417 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ (𝐺𝑘) = 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2818, 27syl5bi 245 . . . 4 (𝜑 → ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2916, 28sylbid 243 . . 3 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍))
3029imp 411 . 2 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌))) → ((𝐹𝐺)‘𝑘) = 𝑍)
315, 30suppss 7861 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wne 2949  cdif 3851  wss 3854  ran crn 5518  ccom 5521   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7143   supp csupp 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-supp 7829
This theorem is referenced by:  mplsubglem  20749  mhpinvcl  20880
  Copyright terms: Public domain W3C validator