MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppcoss Structured version   Visualization version   GIF version

Theorem suppcoss 8023
Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv 8018, which has a sethood condition on 𝐴 instead of 𝐵. (Contributed by SN, 25-May-2024.)
Hypotheses
Ref Expression
suppcoss.f (𝜑𝐹 Fn 𝐴)
suppcoss.g (𝜑𝐺:𝐵𝐴)
suppcoss.b (𝜑𝐵𝑊)
suppcoss.y (𝜑𝑌𝑉)
suppcoss.1 (𝜑 → (𝐹𝑌) = 𝑍)
Assertion
Ref Expression
suppcoss (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))

Proof of Theorem suppcoss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 suppcoss.f . . . 4 (𝜑𝐹 Fn 𝐴)
2 dffn3 6613 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 217 . . 3 (𝜑𝐹:𝐴⟶ran 𝐹)
4 suppcoss.g . . 3 (𝜑𝐺:𝐵𝐴)
53, 4fcod 6626 . 2 (𝜑 → (𝐹𝐺):𝐵⟶ran 𝐹)
6 eldif 3897 . . . . 5 (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)))
74ffnd 6601 . . . . . . . . 9 (𝜑𝐺 Fn 𝐵)
8 suppcoss.b . . . . . . . . 9 (𝜑𝐵𝑊)
9 suppcoss.y . . . . . . . . 9 (𝜑𝑌𝑉)
10 elsuppfn 7987 . . . . . . . . 9 ((𝐺 Fn 𝐵𝐵𝑊𝑌𝑉) → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
117, 8, 9, 10syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑘 ∈ (𝐺 supp 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1211notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑌) ↔ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)))
1312anbi2d 629 . . . . . 6 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌))))
14 annotanannot 832 . . . . . 6 ((𝑘𝐵 ∧ ¬ (𝑘𝐵 ∧ (𝐺𝑘) ≠ 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌))
1513, 14bitrdi 287 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
166, 15bitrid 282 . . . 4 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) ↔ (𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌)))
17 nne 2947 . . . . . 6 (¬ (𝐺𝑘) ≠ 𝑌 ↔ (𝐺𝑘) = 𝑌)
1817anbi2i 623 . . . . 5 ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) ↔ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌))
194adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝐺:𝐵𝐴)
20 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → 𝑘𝐵)
2119, 20fvco3d 6868 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = (𝐹‘(𝐺𝑘)))
22 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐺𝑘) = 𝑌)
2322fveq2d 6778 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹‘(𝐺𝑘)) = (𝐹𝑌))
24 suppcoss.1 . . . . . . . 8 (𝜑 → (𝐹𝑌) = 𝑍)
2524adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → (𝐹𝑌) = 𝑍)
2621, 23, 253eqtrd 2782 . . . . . 6 ((𝜑 ∧ (𝑘𝐵 ∧ (𝐺𝑘) = 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍)
2726ex 413 . . . . 5 (𝜑 → ((𝑘𝐵 ∧ (𝐺𝑘) = 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2818, 27syl5bi 241 . . . 4 (𝜑 → ((𝑘𝐵 ∧ ¬ (𝐺𝑘) ≠ 𝑌) → ((𝐹𝐺)‘𝑘) = 𝑍))
2916, 28sylbid 239 . . 3 (𝜑 → (𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌)) → ((𝐹𝐺)‘𝑘) = 𝑍))
3029imp 407 . 2 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp 𝑌))) → ((𝐹𝐺)‘𝑘) = 𝑍)
315, 30suppss 8010 1 (𝜑 → ((𝐹𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  wss 3887  ran crn 5590  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  mplsubglem  21205  mhpinvcl  21342
  Copyright terms: Public domain W3C validator