![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknclwwlkdif | Structured version Visualization version GIF version |
Description: The set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑉 and ending not at this vertex is the difference between the set 𝐶 of walks of length 𝑁 starting with this vertex 𝑋 and the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknclwwlkdif.a | ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
clwwlknclwwlkdif.b | ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) |
clwwlknclwwlkdif.c | ⊢ 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
Ref | Expression |
---|---|
clwwlknclwwlkdif | ⊢ 𝐴 = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknclwwlkdif.a | . 2 ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
2 | clwwlknclwwlkdif.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | |
3 | clwwlknclwwlkdif.b | . . . . 5 ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
4 | eqid 2825 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | iswwlksnon 27152 | . . . . 5 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
6 | 3, 5 | eqtri 2849 | . . . 4 ⊢ 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
7 | 2, 6 | difeq12i 3953 | . . 3 ⊢ (𝐶 ∖ 𝐵) = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)}) |
8 | difrab 4130 | . . 3 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)}) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋))} | |
9 | annotanannot 870 | . . . . 5 ⊢ (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘𝑁) = 𝑋)) | |
10 | df-ne 3000 | . . . . . . 7 ⊢ ((𝑤‘𝑁) ≠ 𝑋 ↔ ¬ (𝑤‘𝑁) = 𝑋) | |
11 | wwlknlsw 27146 | . . . . . . . 8 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤‘𝑁) = (lastS‘𝑤)) | |
12 | 11 | neeq1d 3058 | . . . . . . 7 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤‘𝑁) ≠ 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋)) |
13 | 10, 12 | syl5bbr 277 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (¬ (𝑤‘𝑁) = 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋)) |
14 | 13 | anbi2d 624 | . . . . 5 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋))) |
15 | 9, 14 | syl5bb 275 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋))) |
16 | 15 | rabbiia 3397 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋))} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
17 | 7, 8, 16 | 3eqtrri 2854 | . 2 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = (𝐶 ∖ 𝐵) |
18 | 1, 17 | eqtri 2849 | 1 ⊢ 𝐴 = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 {crab 3121 ∖ cdif 3795 ‘cfv 6123 (class class class)co 6905 0cc0 10252 lastSclsw 13622 Vtxcvtx 26294 WWalksN cwwlksn 27125 WWalksNOn cwwlksnon 27126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-lsw 13623 df-wwlks 27129 df-wwlksn 27130 df-wwlksnon 27131 |
This theorem is referenced by: clwwlknclwwlkdifnum 27309 |
Copyright terms: Public domain | W3C validator |