MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdif Structured version   Visualization version   GIF version

Theorem clwwlknclwwlkdif 27684
Description: The set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑉 and ending not at this vertex is the difference between the set 𝐶 of walks of length 𝑁 starting with this vertex 𝑋 and the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
clwwlknclwwlkdif.b 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
clwwlknclwwlkdif.c 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Assertion
Ref Expression
clwwlknclwwlkdif 𝐴 = (𝐶𝐵)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑤)   𝐶(𝑤)

Proof of Theorem clwwlknclwwlkdif
StepHypRef Expression
1 clwwlknclwwlkdif.a . 2 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
2 clwwlknclwwlkdif.c . . . 4 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
3 clwwlknclwwlkdif.b . . . . 5 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
4 eqid 2818 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54iswwlksnon 27558 . . . . 5 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
63, 5eqtri 2841 . . . 4 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
72, 6difeq12i 4094 . . 3 (𝐶𝐵) = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)})
8 difrab 4274 . . 3 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋))}
9 annotanannot 830 . . . . 5 (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤𝑁) = 𝑋))
10 df-ne 3014 . . . . . . 7 ((𝑤𝑁) ≠ 𝑋 ↔ ¬ (𝑤𝑁) = 𝑋)
11 wwlknlsw 27552 . . . . . . . 8 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤𝑁) = (lastS‘𝑤))
1211neeq1d 3072 . . . . . . 7 (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤𝑁) ≠ 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋))
1310, 12syl5bbr 286 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (¬ (𝑤𝑁) = 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋))
1413anbi2d 628 . . . . 5 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ (𝑤𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
159, 14syl5bb 284 . . . 4 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
1615rabbiia 3470 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋))} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
177, 8, 163eqtrri 2846 . 2 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = (𝐶𝐵)
181, 17eqtri 2841 1 𝐴 = (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1528  wcel 2105  wne 3013  {crab 3139  cdif 3930  cfv 6348  (class class class)co 7145  0cc0 10525  lastSclsw 13902  Vtxcvtx 26708   WWalksN cwwlksn 27531   WWalksNOn cwwlksnon 27532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-lsw 13903  df-wwlks 27535  df-wwlksn 27536  df-wwlksnon 27537
This theorem is referenced by:  clwwlknclwwlkdifnum  27685
  Copyright terms: Public domain W3C validator