| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknclwwlkdif | Structured version Visualization version GIF version | ||
| Description: The set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑉 and ending not at this vertex is the difference between the set 𝐶 of walks of length 𝑁 starting with this vertex 𝑋 and the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 16-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknclwwlkdif.a | ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
| clwwlknclwwlkdif.b | ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) |
| clwwlknclwwlkdif.c | ⊢ 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
| Ref | Expression |
|---|---|
| clwwlknclwwlkdif | ⊢ 𝐴 = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknclwwlkdif.a | . 2 ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
| 2 | clwwlknclwwlkdif.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | |
| 3 | clwwlknclwwlkdif.b | . . . . 5 ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
| 4 | eqid 2733 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | 4 | iswwlksnon 29833 | . . . . 5 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
| 6 | 3, 5 | eqtri 2756 | . . . 4 ⊢ 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
| 7 | 2, 6 | difeq12i 4073 | . . 3 ⊢ (𝐶 ∖ 𝐵) = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)}) |
| 8 | difrab 4267 | . . 3 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)}) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋))} | |
| 9 | annotanannot 834 | . . . . 5 ⊢ (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘𝑁) = 𝑋)) | |
| 10 | df-ne 2930 | . . . . . . 7 ⊢ ((𝑤‘𝑁) ≠ 𝑋 ↔ ¬ (𝑤‘𝑁) = 𝑋) | |
| 11 | wwlknlsw 29827 | . . . . . . . 8 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤‘𝑁) = (lastS‘𝑤)) | |
| 12 | 11 | neeq1d 2988 | . . . . . . 7 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤‘𝑁) ≠ 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋)) |
| 13 | 10, 12 | bitr3id 285 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (¬ (𝑤‘𝑁) = 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋)) |
| 14 | 13 | anbi2d 630 | . . . . 5 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋))) |
| 15 | 9, 14 | bitrid 283 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋))) |
| 16 | 15 | rabbiia 3400 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋))} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
| 17 | 7, 8, 16 | 3eqtrri 2761 | . 2 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = (𝐶 ∖ 𝐵) |
| 18 | 1, 17 | eqtri 2756 | 1 ⊢ 𝐴 = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ∖ cdif 3895 ‘cfv 6486 (class class class)co 7352 0cc0 11013 lastSclsw 14471 Vtxcvtx 28976 WWalksN cwwlksn 29806 WWalksNOn cwwlksnon 29807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-lsw 14472 df-wwlks 29810 df-wwlksn 29811 df-wwlksnon 29812 |
| This theorem is referenced by: clwwlknclwwlkdifnum 29962 |
| Copyright terms: Public domain | W3C validator |