Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknclwwlkdif | Structured version Visualization version GIF version |
Description: The set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑉 and ending not at this vertex is the difference between the set 𝐶 of walks of length 𝑁 starting with this vertex 𝑋 and the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 16-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknclwwlkdif.a | ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
clwwlknclwwlkdif.b | ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) |
clwwlknclwwlkdif.c | ⊢ 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
Ref | Expression |
---|---|
clwwlknclwwlkdif | ⊢ 𝐴 = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknclwwlkdif.a | . 2 ⊢ 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} | |
2 | clwwlknclwwlkdif.c | . . . 4 ⊢ 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} | |
3 | clwwlknclwwlkdif.b | . . . . 5 ⊢ 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋) | |
4 | eqid 2737 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | iswwlksnon 28327 | . . . . 5 ⊢ (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
6 | 3, 5 | eqtri 2765 | . . . 4 ⊢ 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)} |
7 | 2, 6 | difeq12i 4066 | . . 3 ⊢ (𝐶 ∖ 𝐵) = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)}) |
8 | difrab 4253 | . . 3 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)}) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋))} | |
9 | annotanannot 832 | . . . . 5 ⊢ (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘𝑁) = 𝑋)) | |
10 | df-ne 2942 | . . . . . . 7 ⊢ ((𝑤‘𝑁) ≠ 𝑋 ↔ ¬ (𝑤‘𝑁) = 𝑋) | |
11 | wwlknlsw 28321 | . . . . . . . 8 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤‘𝑁) = (lastS‘𝑤)) | |
12 | 11 | neeq1d 3001 | . . . . . . 7 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤‘𝑁) ≠ 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋)) |
13 | 10, 12 | bitr3id 284 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (¬ (𝑤‘𝑁) = 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋)) |
14 | 13 | anbi2d 629 | . . . . 5 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ (𝑤‘𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋))) |
15 | 9, 14 | bitrid 282 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋))) |
16 | 15 | rabbiia 3408 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤‘𝑁) = 𝑋))} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} |
17 | 7, 8, 16 | 3eqtrri 2770 | . 2 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = (𝐶 ∖ 𝐵) |
18 | 1, 17 | eqtri 2765 | 1 ⊢ 𝐴 = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 {crab 3404 ∖ cdif 3894 ‘cfv 6465 (class class class)co 7315 0cc0 10944 lastSclsw 14337 Vtxcvtx 27475 WWalksN cwwlksn 28300 WWalksNOn cwwlksnon 28301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-n0 12307 df-z 12393 df-uz 12656 df-fz 13313 df-fzo 13456 df-hash 14118 df-word 14290 df-lsw 14338 df-wwlks 28304 df-wwlksn 28305 df-wwlksnon 28306 |
This theorem is referenced by: clwwlknclwwlkdifnum 28453 |
Copyright terms: Public domain | W3C validator |