Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bicomd | Structured version Visualization version GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bicom 221 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Copyright terms: Public domain | W3C validator |