| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 663 annotanannot 834 pm5.33 835 pclem6 1027 moanimv 2614 moanim 2615 euan 2616 euanv 2619 ralanid 3080 rexanid 3081 r19.29 3095 rmoanid 3356 reuanid 3357 eueq3 3670 reu6 3685 reuan 3847 ifan 4529 dfopif 4822 notzfaus 5301 reusv2lem5 5340 dmopab2rex 5857 elpredg 6262 fvopab3g 6924 riota1a 7325 dfom2 7798 suppssr 8125 mpocurryd 8199 boxcutc 8865 funisfsupp 9251 dfac3 10012 eluz2 12738 elixx3g 13258 elfz2 13414 zmodid2 13803 shftfib 14979 dvdsssfz1 16229 modremain 16319 sadadd2lem2 16361 smumullem 16403 tltnle 18326 issubg 19039 resgrpisgrp 19060 sscntz 19239 pgrpsubgsymgbi 19321 qusecsub 19748 isrnghm 20360 rnghmval2 20363 issubrng 20463 issubrg 20487 lindsmm 21766 mdetunilem8 22535 mdetunilem9 22536 cmpsub 23316 txcnmpt 23540 hausdiag 23561 fbfinnfr 23757 elfilss 23792 fixufil 23838 ibladdlem 25749 iblabslem 25757 slenlt 27692 cusgruvtxb 29401 usgr0edg0rusgr 29555 rgrusgrprc 29569 rusgrnumwwlkslem 29948 eclclwwlkn1 30053 eupth2lem1 30196 pjimai 32154 chrelati 32342 bian1d 32433 metidv 33903 satfv1lem 35404 dmopab3rexdif 35447 copsex2b 37180 curf 37644 unccur 37649 cnambfre 37714 itg2addnclem2 37718 ibladdnclem 37722 iblabsnclem 37729 prjsprellsp 42650 expdiophlem1 43060 rfovcnvf1od 44043 fsovrfovd 44048 ntrneiel2 44125 odd2np1ALTV 47711 clnbupgrel 47871 dfvopnbgr2 47890 vopnbgrelself 47892 uzlidlring 48272 islindeps 48491 elbigo2 48590 |
| Copyright terms: Public domain | W3C validator |