| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 663 annotanannot 834 pm5.33 835 pclem6 1027 moanimv 2612 moanim 2613 euan 2614 euanv 2617 ralanid 3077 rexanid 3078 r19.29 3094 rmoanid 3364 reuanid 3365 eueq3 3682 reu6 3697 reuan 3859 ifan 4542 dfopif 4834 notzfaus 5318 reusv2lem5 5357 dmopab2rex 5881 elpredg 6288 fvopab3g 6963 riota1a 7366 dfom2 7844 suppssr 8174 mpocurryd 8248 boxcutc 8914 funisfsupp 9318 dfac3 10074 eluz2 12799 elixx3g 13319 elfz2 13475 zmodid2 13861 shftfib 15038 dvdsssfz1 16288 modremain 16378 sadadd2lem2 16420 smumullem 16462 tltnle 18381 issubg 19058 resgrpisgrp 19079 sscntz 19258 pgrpsubgsymgbi 19338 qusecsub 19765 isrnghm 20350 rnghmval2 20353 issubrng 20456 issubrg 20480 lindsmm 21737 mdetunilem8 22506 mdetunilem9 22507 cmpsub 23287 txcnmpt 23511 hausdiag 23532 fbfinnfr 23728 elfilss 23763 fixufil 23809 ibladdlem 25721 iblabslem 25729 slenlt 27664 cusgruvtxb 29349 usgr0edg0rusgr 29503 rgrusgrprc 29517 rusgrnumwwlkslem 29899 eclclwwlkn1 30004 eupth2lem1 30147 pjimai 32105 chrelati 32293 bian1d 32385 metidv 33882 satfv1lem 35349 dmopab3rexdif 35392 copsex2b 37128 curf 37592 unccur 37597 cnambfre 37662 itg2addnclem2 37666 ibladdnclem 37670 iblabsnclem 37677 prjsprellsp 42599 expdiophlem1 43010 rfovcnvf1od 43993 fsovrfovd 43998 ntrneiel2 44075 odd2np1ALTV 47675 clnbupgrel 47835 dfvopnbgr2 47853 vopnbgrelself 47855 uzlidlring 48223 islindeps 48442 elbigo2 48541 |
| Copyright terms: Public domain | W3C validator |