| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 663 annotanannot 834 pm5.33 835 pclem6 1027 moanimv 2619 moanim 2620 euan 2621 euanv 2624 ralanid 3085 rexanid 3086 r19.29 3102 rmoanid 3374 reuanid 3375 eueq3 3699 reu6 3714 reuan 3876 ifan 4559 dfopif 4851 notzfaus 5338 reusv2lem5 5377 dmopab2rex 5902 elpredg 6309 fvopab3g 6986 riota1a 7389 dfom2 7868 suppssr 8199 mpocurryd 8273 boxcutc 8960 funisfsupp 9384 dfac3 10140 eluz2 12863 elixx3g 13380 elfz2 13536 zmodid2 13921 shftfib 15096 dvdsssfz1 16342 modremain 16432 sadadd2lem2 16474 smumullem 16516 tltnle 18437 issubg 19114 resgrpisgrp 19135 sscntz 19314 pgrpsubgsymgbi 19394 qusecsub 19821 isrnghm 20406 rnghmval2 20409 issubrng 20512 issubrg 20536 lindsmm 21793 mdetunilem8 22562 mdetunilem9 22563 cmpsub 23343 txcnmpt 23567 hausdiag 23588 fbfinnfr 23784 elfilss 23819 fixufil 23865 ibladdlem 25778 iblabslem 25786 slenlt 27721 cusgruvtxb 29406 usgr0edg0rusgr 29560 rgrusgrprc 29574 rusgrnumwwlkslem 29956 eclclwwlkn1 30061 eupth2lem1 30204 pjimai 32162 chrelati 32350 bian1d 32442 metidv 33928 satfv1lem 35389 dmopab3rexdif 35432 copsex2b 37163 curf 37627 unccur 37632 cnambfre 37697 itg2addnclem2 37701 ibladdnclem 37705 iblabsnclem 37712 prjsprellsp 42609 expdiophlem1 43020 rfovcnvf1od 44003 fsovrfovd 44008 ntrneiel2 44085 odd2np1ALTV 47668 clnbupgrel 47828 dfvopnbgr2 47846 vopnbgrelself 47848 uzlidlring 48190 islindeps 48409 elbigo2 48512 |
| Copyright terms: Public domain | W3C validator |