![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 528 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
2 | 1 | biancomd 464 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: biantrurd 533 baib 536 baibd 540 bianabs 542 pm5.42 544 anclb 546 anabs5 661 annotanannot 833 pm5.33 834 pclem6 1024 moanimv 2615 moanim 2616 euan 2617 euanv 2620 ralanid 3095 rexanid 3096 r19.29 3114 rmoanid 3386 reuanid 3387 eueq3 3706 reu6 3721 reuan 3889 ifan 4580 dfopif 4869 notzfaus 5360 reusv2lem5 5399 dmopab2rex 5915 elpredg 6311 fvopab3g 6990 riota1a 7384 dfom2 7853 suppssr 8177 mpocurryd 8250 boxcutc 8931 funisfsupp 9363 dfac3 10112 eluz2 12824 elixx3g 13333 elfz2 13487 zmodid2 13860 shftfib 15015 dvdsssfz1 16257 modremain 16347 sadadd2lem2 16387 smumullem 16429 tltnle 18371 issubg 19000 resgrpisgrp 19021 sscntz 19184 pgrpsubgsymgbi 19270 qusecsub 19697 issubrg 20355 lindsmm 21374 mdetunilem8 22112 mdetunilem9 22113 cmpsub 22895 txcnmpt 23119 hausdiag 23140 fbfinnfr 23336 elfilss 23371 fixufil 23417 ibladdlem 25328 iblabslem 25336 slenlt 27244 cusgruvtxb 28668 usgr0edg0rusgr 28821 rgrusgrprc 28835 rusgrnumwwlkslem 29212 eclclwwlkn1 29317 eupth2lem1 29460 pjimai 31416 chrelati 31604 metidv 32860 satfv1lem 34341 dmopab3rexdif 34384 copsex2b 36009 curf 36454 unccur 36459 cnambfre 36524 itg2addnclem2 36528 ibladdnclem 36532 iblabsnclem 36539 prjsprellsp 41349 expdiophlem1 41745 rfovcnvf1od 42740 fsovrfovd 42745 ntrneiel2 42822 odd2np1ALTV 46328 isrnghm 46675 rnghmval2 46678 issubrng 46710 uzlidlring 46780 islindeps 47087 elbigo2 47191 |
Copyright terms: Public domain | W3C validator |