| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 663 annotanannot 834 pm5.33 835 pclem6 1027 moanimv 2617 moanim 2618 euan 2619 euanv 2622 ralanid 3083 rexanid 3084 r19.29 3101 rmoanid 3374 reuanid 3375 eueq3 3701 reu6 3716 reuan 3878 ifan 4561 dfopif 4852 notzfaus 5345 reusv2lem5 5384 dmopab2rex 5910 elpredg 6317 fvopab3g 6992 riota1a 7393 dfom2 7872 suppssr 8203 mpocurryd 8277 boxcutc 8964 funisfsupp 9390 dfac3 10144 eluz2 12867 elixx3g 13383 elfz2 13537 zmodid2 13922 shftfib 15094 dvdsssfz1 16338 modremain 16428 sadadd2lem2 16470 smumullem 16512 tltnle 18441 issubg 19118 resgrpisgrp 19139 sscntz 19318 pgrpsubgsymgbi 19399 qusecsub 19826 isrnghm 20414 rnghmval2 20417 issubrng 20520 issubrg 20544 lindsmm 21815 mdetunilem8 22592 mdetunilem9 22593 cmpsub 23373 txcnmpt 23597 hausdiag 23618 fbfinnfr 23814 elfilss 23849 fixufil 23895 ibladdlem 25810 iblabslem 25818 slenlt 27752 cusgruvtxb 29386 usgr0edg0rusgr 29540 rgrusgrprc 29554 rusgrnumwwlkslem 29936 eclclwwlkn1 30041 eupth2lem1 30184 pjimai 32142 chrelati 32330 bian1d 32422 metidv 33832 satfv1lem 35308 dmopab3rexdif 35351 copsex2b 37082 curf 37546 unccur 37551 cnambfre 37616 itg2addnclem2 37620 ibladdnclem 37624 iblabsnclem 37631 prjsprellsp 42566 expdiophlem1 42978 rfovcnvf1od 43962 fsovrfovd 43967 ntrneiel2 44044 odd2np1ALTV 47607 clnbupgrel 47767 dfvopnbgr2 47785 vopnbgrelself 47787 uzlidlring 48097 islindeps 48316 elbigo2 48419 |
| Copyright terms: Public domain | W3C validator |