| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 663 annotanannot 834 pm5.33 835 pclem6 1027 moanimv 2616 moanim 2617 euan 2618 euanv 2621 ralanid 3081 rexanid 3082 r19.29 3096 rmoanid 3357 reuanid 3358 eueq3 3666 reu6 3681 reuan 3843 ifan 4528 dfopif 4821 notzfaus 5303 reusv2lem5 5342 dmopab2rex 5861 elpredg 6267 fvopab3g 6930 riota1a 7331 dfom2 7804 suppssr 8131 mpocurryd 8205 boxcutc 8871 funisfsupp 9258 dfac3 10019 eluz2 12744 elixx3g 13260 elfz2 13416 zmodid2 13805 shftfib 14981 dvdsssfz1 16231 modremain 16321 sadadd2lem2 16363 smumullem 16405 tltnle 18328 issubg 19041 resgrpisgrp 19062 sscntz 19240 pgrpsubgsymgbi 19322 qusecsub 19749 isrnghm 20361 rnghmval2 20364 issubrng 20464 issubrg 20488 lindsmm 21767 mdetunilem8 22535 mdetunilem9 22536 cmpsub 23316 txcnmpt 23540 hausdiag 23561 fbfinnfr 23757 elfilss 23792 fixufil 23838 ibladdlem 25749 iblabslem 25757 slenlt 27692 cusgruvtxb 29402 usgr0edg0rusgr 29556 rgrusgrprc 29570 rusgrnumwwlkslem 29952 eclclwwlkn1 30057 eupth2lem1 30200 pjimai 32158 chrelati 32346 bian1d 32437 metidv 33926 satfv1lem 35427 dmopab3rexdif 35470 copsex2b 37205 curf 37659 unccur 37664 cnambfre 37729 itg2addnclem2 37733 ibladdnclem 37737 iblabsnclem 37744 prjsprellsp 42730 expdiophlem1 43139 rfovcnvf1od 44122 fsovrfovd 44127 ntrneiel2 44204 odd2np1ALTV 47799 clnbupgrel 47959 dfvopnbgr2 47978 vopnbgrelself 47980 uzlidlring 48360 islindeps 48579 elbigo2 48678 |
| Copyright terms: Public domain | W3C validator |