![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 663 annotanannot 835 pm5.33 836 pclem6 1027 moanimv 2617 moanim 2618 euan 2619 euanv 2622 ralanid 3093 rexanid 3094 r19.29 3112 rmoanid 3388 reuanid 3389 eueq3 3720 reu6 3735 reuan 3905 ifan 4584 dfopif 4875 notzfaus 5369 reusv2lem5 5408 dmopab2rex 5931 elpredg 6337 fvopab3g 7011 riota1a 7410 dfom2 7889 suppssr 8219 mpocurryd 8293 boxcutc 8980 funisfsupp 9405 dfac3 10159 eluz2 12882 elixx3g 13397 elfz2 13551 zmodid2 13936 shftfib 15108 dvdsssfz1 16352 modremain 16442 sadadd2lem2 16484 smumullem 16526 tltnle 18480 issubg 19157 resgrpisgrp 19178 sscntz 19357 pgrpsubgsymgbi 19441 qusecsub 19868 isrnghm 20458 rnghmval2 20461 issubrng 20564 issubrg 20588 lindsmm 21866 mdetunilem8 22641 mdetunilem9 22642 cmpsub 23424 txcnmpt 23648 hausdiag 23669 fbfinnfr 23865 elfilss 23900 fixufil 23946 ibladdlem 25870 iblabslem 25878 slenlt 27812 cusgruvtxb 29454 usgr0edg0rusgr 29608 rgrusgrprc 29622 rusgrnumwwlkslem 29999 eclclwwlkn1 30104 eupth2lem1 30247 pjimai 32205 chrelati 32393 bian1d 32484 metidv 33853 satfv1lem 35347 dmopab3rexdif 35390 copsex2b 37123 curf 37585 unccur 37590 cnambfre 37655 itg2addnclem2 37659 ibladdnclem 37663 iblabsnclem 37670 prjsprellsp 42598 expdiophlem1 43010 rfovcnvf1od 43994 fsovrfovd 43999 ntrneiel2 44076 odd2np1ALTV 47599 clnbupgrel 47759 dfvopnbgr2 47777 vopnbgrelself 47779 uzlidlring 48079 islindeps 48299 elbigo2 48402 |
Copyright terms: Public domain | W3C validator |