![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 662 annotanannot 834 pm5.33 835 pclem6 1026 moanimv 2622 moanim 2623 euan 2624 euanv 2627 ralanid 3101 rexanid 3102 r19.29 3120 rmoanid 3398 reuanid 3399 eueq3 3733 reu6 3748 reuan 3918 ifan 4601 dfopif 4894 notzfaus 5381 reusv2lem5 5420 dmopab2rex 5942 elpredg 6346 fvopab3g 7024 riota1a 7427 dfom2 7905 suppssr 8236 mpocurryd 8310 boxcutc 8999 funisfsupp 9437 dfac3 10190 eluz2 12909 elixx3g 13420 elfz2 13574 zmodid2 13950 shftfib 15121 dvdsssfz1 16366 modremain 16456 sadadd2lem2 16496 smumullem 16538 tltnle 18492 issubg 19166 resgrpisgrp 19187 sscntz 19366 pgrpsubgsymgbi 19450 qusecsub 19877 isrnghm 20467 rnghmval2 20470 issubrng 20573 issubrg 20599 lindsmm 21871 mdetunilem8 22646 mdetunilem9 22647 cmpsub 23429 txcnmpt 23653 hausdiag 23674 fbfinnfr 23870 elfilss 23905 fixufil 23951 ibladdlem 25875 iblabslem 25883 slenlt 27815 cusgruvtxb 29457 usgr0edg0rusgr 29611 rgrusgrprc 29625 rusgrnumwwlkslem 30002 eclclwwlkn1 30107 eupth2lem1 30250 pjimai 32208 chrelati 32396 bian1d 32484 metidv 33838 satfv1lem 35330 dmopab3rexdif 35373 copsex2b 37106 curf 37558 unccur 37563 cnambfre 37628 itg2addnclem2 37632 ibladdnclem 37636 iblabsnclem 37643 prjsprellsp 42566 expdiophlem1 42978 rfovcnvf1od 43966 fsovrfovd 43971 ntrneiel2 44048 odd2np1ALTV 47548 clnbupgrel 47707 dfvopnbgr2 47725 vopnbgrelself 47727 uzlidlring 47958 islindeps 48182 elbigo2 48286 |
Copyright terms: Public domain | W3C validator |