![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 529 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
2 | 1 | biancomd 465 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: biantrurd 534 baib 537 baibd 541 bianabs 543 pm5.42 545 anclb 547 anabs5 662 annotanannot 834 pm5.33 835 pclem6 1025 moanimv 2616 moanim 2617 euan 2618 euanv 2621 ralanid 3096 rexanid 3097 r19.29 3115 rmoanid 3387 reuanid 3388 eueq3 3708 reu6 3723 reuan 3891 ifan 4582 dfopif 4871 notzfaus 5362 reusv2lem5 5401 dmopab2rex 5918 elpredg 6315 fvopab3g 6994 riota1a 7388 dfom2 7857 suppssr 8181 mpocurryd 8254 boxcutc 8935 funisfsupp 9367 dfac3 10116 eluz2 12828 elixx3g 13337 elfz2 13491 zmodid2 13864 shftfib 15019 dvdsssfz1 16261 modremain 16351 sadadd2lem2 16391 smumullem 16433 tltnle 18375 issubg 19006 resgrpisgrp 19027 sscntz 19190 pgrpsubgsymgbi 19276 qusecsub 19703 issubrg 20319 lindsmm 21383 mdetunilem8 22121 mdetunilem9 22122 cmpsub 22904 txcnmpt 23128 hausdiag 23149 fbfinnfr 23345 elfilss 23380 fixufil 23426 ibladdlem 25337 iblabslem 25345 slenlt 27255 cusgruvtxb 28679 usgr0edg0rusgr 28832 rgrusgrprc 28846 rusgrnumwwlkslem 29223 eclclwwlkn1 29328 eupth2lem1 29471 pjimai 31429 chrelati 31617 metidv 32872 satfv1lem 34353 dmopab3rexdif 34396 copsex2b 36021 curf 36466 unccur 36471 cnambfre 36536 itg2addnclem2 36540 ibladdnclem 36544 iblabsnclem 36551 prjsprellsp 41353 expdiophlem1 41760 rfovcnvf1od 42755 fsovrfovd 42760 ntrneiel2 42837 odd2np1ALTV 46342 isrnghm 46690 rnghmval2 46693 issubrng 46726 uzlidlring 46827 islindeps 47134 elbigo2 47238 |
Copyright terms: Public domain | W3C validator |