| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version | ||
| Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
| Ref | Expression |
|---|---|
| ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 663 annotanannot 834 pm5.33 835 pclem6 1027 moanimv 2612 moanim 2613 euan 2614 euanv 2617 ralanid 3077 rexanid 3078 r19.29 3092 rmoanid 3355 reuanid 3356 eueq3 3673 reu6 3688 reuan 3850 ifan 4532 dfopif 4824 notzfaus 5305 reusv2lem5 5344 dmopab2rex 5864 elpredg 6267 fvopab3g 6929 riota1a 7332 dfom2 7808 suppssr 8135 mpocurryd 8209 boxcutc 8875 funisfsupp 9276 dfac3 10034 eluz2 12759 elixx3g 13279 elfz2 13435 zmodid2 13821 shftfib 14997 dvdsssfz1 16247 modremain 16337 sadadd2lem2 16379 smumullem 16421 tltnle 18344 issubg 19023 resgrpisgrp 19044 sscntz 19223 pgrpsubgsymgbi 19305 qusecsub 19732 isrnghm 20344 rnghmval2 20347 issubrng 20450 issubrg 20474 lindsmm 21753 mdetunilem8 22522 mdetunilem9 22523 cmpsub 23303 txcnmpt 23527 hausdiag 23548 fbfinnfr 23744 elfilss 23779 fixufil 23825 ibladdlem 25737 iblabslem 25745 slenlt 27680 cusgruvtxb 29385 usgr0edg0rusgr 29539 rgrusgrprc 29553 rusgrnumwwlkslem 29932 eclclwwlkn1 30037 eupth2lem1 30180 pjimai 32138 chrelati 32326 bian1d 32418 metidv 33861 satfv1lem 35337 dmopab3rexdif 35380 copsex2b 37116 curf 37580 unccur 37585 cnambfre 37650 itg2addnclem2 37654 ibladdnclem 37658 iblabsnclem 37665 prjsprellsp 42587 expdiophlem1 42997 rfovcnvf1od 43980 fsovrfovd 43985 ntrneiel2 44062 odd2np1ALTV 47662 clnbupgrel 47822 dfvopnbgr2 47841 vopnbgrelself 47843 uzlidlring 48223 islindeps 48442 elbigo2 48541 |
| Copyright terms: Public domain | W3C validator |