Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 528 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
2 | 1 | biancomd 464 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: biantrurd 533 baib 536 baibd 540 bianabs 542 pm5.42 544 anclb 546 anabs5 660 annotanannot 832 pm5.33 833 pclem6 1023 moanimv 2622 moanim 2623 euan 2624 euanv 2627 ralanid 3095 rexanid 3184 eueq3 3647 reu6 3662 reuan 3830 ifan 4513 dfopifOLD 4802 notzfaus 5286 reusv2lem5 5326 dmopab2rex 5829 elpredg 6220 fvopab3g 6879 riota1a 7264 dfom2 7723 suppssr 8021 mpocurryd 8094 boxcutc 8738 funisfsupp 9142 dfac3 9886 eluz2 12597 elixx3g 13101 elfz2 13255 zmodid2 13628 shftfib 14792 dvdsssfz1 16036 modremain 16126 sadadd2lem2 16166 smumullem 16208 tltnle 18149 issubg 18764 resgrpisgrp 18785 sscntz 18941 pgrpsubgsymgbi 19025 issubrg 20033 lindsmm 21044 mdetunilem8 21777 mdetunilem9 21778 cmpsub 22560 txcnmpt 22784 hausdiag 22805 fbfinnfr 23001 elfilss 23036 fixufil 23082 ibladdlem 24993 iblabslem 25001 cusgruvtxb 27798 usgr0edg0rusgr 27951 rgrusgrprc 27965 rusgrnumwwlkslem 28343 eclclwwlkn1 28448 eupth2lem1 28591 pjimai 30547 chrelati 30735 metidv 31851 satfv1lem 33333 dmopab3rexdif 33376 slenlt 33964 copsex2b 35320 curf 35764 unccur 35769 cnambfre 35834 itg2addnclem2 35838 ibladdnclem 35842 iblabsnclem 35849 prjsprellsp 40457 expdiophlem1 40850 rfovcnvf1od 41619 fsovrfovd 41624 ntrneiel2 41703 odd2np1ALTV 45137 isrnghm 45461 rnghmval2 45464 uzlidlring 45498 islindeps 45805 elbigo2 45909 |
Copyright terms: Public domain | W3C validator |