Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
2 | 1 | biancomd 463 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: biantrurd 532 baib 535 baibd 539 bianabs 541 pm5.42 543 anclb 545 anabs5 659 annotanannot 831 pm5.33 832 pclem6 1022 moanimv 2621 moanim 2622 euan 2623 euanv 2626 ralanid 3093 rexanid 3182 eueq3 3641 reu6 3656 reuan 3825 ifan 4509 dfopifOLD 4798 notzfaus 5280 reusv2lem5 5320 dmopab2rex 5815 elpredg 6205 fvopab3g 6852 riota1a 7235 dfom2 7689 suppssr 7983 mpocurryd 8056 boxcutc 8687 funisfsupp 9063 dfac3 9808 eluz2 12517 elixx3g 13021 elfz2 13175 zmodid2 13547 shftfib 14711 dvdsssfz1 15955 modremain 16045 sadadd2lem2 16085 smumullem 16127 tltnle 18055 issubg 18670 resgrpisgrp 18691 sscntz 18847 pgrpsubgsymgbi 18931 issubrg 19939 lindsmm 20945 mdetunilem8 21676 mdetunilem9 21677 cmpsub 22459 txcnmpt 22683 hausdiag 22704 fbfinnfr 22900 elfilss 22935 fixufil 22981 ibladdlem 24889 iblabslem 24897 cusgruvtxb 27692 usgr0edg0rusgr 27845 rgrusgrprc 27859 rusgrnumwwlkslem 28235 eclclwwlkn1 28340 eupth2lem1 28483 pjimai 30439 chrelati 30627 metidv 31744 satfv1lem 33224 dmopab3rexdif 33267 slenlt 33882 copsex2b 35238 curf 35682 unccur 35687 cnambfre 35752 itg2addnclem2 35756 ibladdnclem 35760 iblabsnclem 35767 prjsprellsp 40371 expdiophlem1 40759 rfovcnvf1od 41501 fsovrfovd 41506 ntrneiel2 41585 odd2np1ALTV 45014 isrnghm 45338 rnghmval2 45341 uzlidlring 45375 islindeps 45682 elbigo2 45786 |
Copyright terms: Public domain | W3C validator |