Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 531 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
2 | 1 | biancomd 467 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: biantrurd 536 baib 539 baibd 543 bianabs 545 pm5.42 547 anclb 549 anabs5 663 annotanannot 835 pm5.33 836 pclem6 1026 moanimv 2620 moanim 2621 euan 2622 euanv 2625 ralanid 3091 rexanid 3175 eueq3 3624 reu6 3639 reuan 3808 ifan 4492 dfopifOLD 4781 notzfaus 5254 reusv2lem5 5295 dmopab2rex 5786 elpredg 6173 fvopab3g 6813 riota1a 7193 dfom2 7646 suppssr 7938 mpocurryd 8011 boxcutc 8622 funisfsupp 8990 dfac3 9735 eluz2 12444 elixx3g 12948 elfz2 13102 zmodid2 13472 shftfib 14635 dvdsssfz1 15879 modremain 15969 sadadd2lem2 16009 smumullem 16051 tltnle 17928 issubg 18543 resgrpisgrp 18564 sscntz 18720 pgrpsubgsymgbi 18800 issubrg 19800 lindsmm 20790 mdetunilem8 21516 mdetunilem9 21517 cmpsub 22297 txcnmpt 22521 hausdiag 22542 fbfinnfr 22738 elfilss 22773 fixufil 22819 ibladdlem 24717 iblabslem 24725 cusgruvtxb 27510 usgr0edg0rusgr 27663 rgrusgrprc 27677 rusgrnumwwlkslem 28053 eclclwwlkn1 28158 eupth2lem1 28301 pjimai 30257 chrelati 30445 metidv 31556 satfv1lem 33037 dmopab3rexdif 33080 slenlt 33692 copsex2b 35046 curf 35492 unccur 35497 cnambfre 35562 itg2addnclem2 35566 ibladdnclem 35570 iblabsnclem 35577 prjsprellsp 40158 expdiophlem1 40546 rfovcnvf1od 41289 fsovrfovd 41294 ntrneiel2 41373 odd2np1ALTV 44799 isrnghm 45123 rnghmval2 45126 uzlidlring 45160 islindeps 45467 elbigo2 45571 |
Copyright terms: Public domain | W3C validator |