Proof of Theorem 0nn0m1nnn0
Step | Hyp | Ref
| Expression |
1 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
2 | | eleq1 2826 |
. . . 4
⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈
ℕ0)) |
3 | 1, 2 | mpbiri 257 |
. . 3
⊢ (𝑁 = 0 → 𝑁 ∈
ℕ0) |
4 | | 1nn 11914 |
. . . . . 6
⊢ 1 ∈
ℕ |
5 | | 0mnnnnn0 12195 |
. . . . . 6
⊢ (1 ∈
ℕ → (0 − 1) ∉ ℕ0) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ (0
− 1) ∉ ℕ0 |
7 | | oveq1 7262 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑁 − 1) = (0 −
1)) |
8 | | neleq1 3053 |
. . . . . 6
⊢ ((𝑁 − 1) = (0 − 1)
→ ((𝑁 − 1)
∉ ℕ0 ↔ (0 − 1) ∉
ℕ0)) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ (𝑁 = 0 → ((𝑁 − 1) ∉ ℕ0
↔ (0 − 1) ∉ ℕ0)) |
10 | 6, 9 | mpbiri 257 |
. . . 4
⊢ (𝑁 = 0 → (𝑁 − 1) ∉
ℕ0) |
11 | | df-nel 3049 |
. . . 4
⊢ ((𝑁 − 1) ∉
ℕ0 ↔ ¬ (𝑁 − 1) ∈
ℕ0) |
12 | 10, 11 | sylib 217 |
. . 3
⊢ (𝑁 = 0 → ¬ (𝑁 − 1) ∈
ℕ0) |
13 | 3, 12 | jca 511 |
. 2
⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 ∧ ¬
(𝑁 − 1) ∈
ℕ0)) |
14 | | nn0z 12273 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
15 | | peano2zm 12293 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 − 1) ∈
ℤ) |
17 | | elnn0z 12262 |
. . . . . . . 8
⊢ ((𝑁 − 1) ∈
ℕ0 ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤
(𝑁 −
1))) |
18 | 17 | notbii 319 |
. . . . . . 7
⊢ (¬
(𝑁 − 1) ∈
ℕ0 ↔ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤
(𝑁 −
1))) |
19 | 18 | biimpi 215 |
. . . . . 6
⊢ (¬
(𝑁 − 1) ∈
ℕ0 → ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤
(𝑁 −
1))) |
20 | | annotanannot 831 |
. . . . . . 7
⊢ (((𝑁 − 1) ∈ ℤ ∧
¬ ((𝑁 − 1) ∈
ℤ ∧ 0 ≤ (𝑁
− 1))) ↔ ((𝑁
− 1) ∈ ℤ ∧ ¬ 0 ≤ (𝑁 − 1))) |
21 | 20 | simprbi 496 |
. . . . . 6
⊢ (((𝑁 − 1) ∈ ℤ ∧
¬ ((𝑁 − 1) ∈
ℤ ∧ 0 ≤ (𝑁
− 1))) → ¬ 0 ≤ (𝑁 − 1)) |
22 | 16, 19, 21 | syl2an 595 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → ¬ 0 ≤ (𝑁 − 1)) |
23 | | zre 12253 |
. . . . . . . . 9
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
ℝ) |
24 | 14, 15, 23 | 3syl 18 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑁 − 1) ∈
ℝ) |
25 | | 0red 10909 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ ℝ) |
26 | 24, 25 | ltnled 11052 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 − 1) <
0 ↔ ¬ 0 ≤ (𝑁
− 1))) |
27 | 26 | biimprd 247 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (¬ 0 ≤ (𝑁
− 1) → (𝑁
− 1) < 0)) |
28 | 27 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0)) |
29 | 22, 28 | mpd 15 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → (𝑁 − 1) < 0) |
30 | | 0z 12260 |
. . . . . . 7
⊢ 0 ∈
ℤ |
31 | | zlem1lt 12302 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 ≤ 0
↔ (𝑁 − 1) <
0)) |
32 | 14, 30, 31 | sylancl 585 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ≤ 0 ↔
(𝑁 − 1) <
0)) |
33 | 32 | biimprd 247 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 − 1) <
0 → 𝑁 ≤
0)) |
34 | 33 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → ((𝑁 − 1) < 0 → 𝑁 ≤ 0)) |
35 | 29, 34 | mpd 15 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → 𝑁 ≤ 0) |
36 | | nn0ge0 12188 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
37 | 36 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → 0 ≤ 𝑁) |
38 | | nn0re 12172 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
39 | 38, 25 | letri3d 11047 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁))) |
40 | 39 | biimprd 247 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 ≤ 0 ∧ 0
≤ 𝑁) → 𝑁 = 0)) |
41 | 40 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0)) |
42 | 35, 37, 41 | mp2and 695 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ ¬ (𝑁 − 1)
∈ ℕ0) → 𝑁 = 0) |
43 | 13, 42 | impbii 208 |
1
⊢ (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬
(𝑁 − 1) ∈
ℕ0)) |