Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nn0m1nnn0 Structured version   Visualization version   GIF version

Theorem 0nn0m1nnn0 35097
Description: A number is zero if and only if it's a nonnegative integer that becomes negative after subtracting 1. (Contributed by BTernaryTau, 30-Sep-2023.)
Assertion
Ref Expression
0nn0m1nnn0 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))

Proof of Theorem 0nn0m1nnn0
StepHypRef Expression
1 0nn0 12539 . . . 4 0 ∈ ℕ0
2 eleq1 2827 . . . 4 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
31, 2mpbiri 258 . . 3 (𝑁 = 0 → 𝑁 ∈ ℕ0)
4 1nn 12275 . . . . . 6 1 ∈ ℕ
5 0mnnnnn0 12556 . . . . . 6 (1 ∈ ℕ → (0 − 1) ∉ ℕ0)
64, 5ax-mp 5 . . . . 5 (0 − 1) ∉ ℕ0
7 oveq1 7438 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
8 neleq1 3050 . . . . . 6 ((𝑁 − 1) = (0 − 1) → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
97, 8syl 17 . . . . 5 (𝑁 = 0 → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
106, 9mpbiri 258 . . . 4 (𝑁 = 0 → (𝑁 − 1) ∉ ℕ0)
11 df-nel 3045 . . . 4 ((𝑁 − 1) ∉ ℕ0 ↔ ¬ (𝑁 − 1) ∈ ℕ0)
1210, 11sylib 218 . . 3 (𝑁 = 0 → ¬ (𝑁 − 1) ∈ ℕ0)
133, 12jca 511 . 2 (𝑁 = 0 → (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
14 nn0z 12636 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15 peano2zm 12658 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1614, 15syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
17 elnn0z 12624 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1817notbii 320 . . . . . . 7 (¬ (𝑁 − 1) ∈ ℕ0 ↔ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1918biimpi 216 . . . . . 6 (¬ (𝑁 − 1) ∈ ℕ0 → ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
20 annotanannot 835 . . . . . . 7 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) ↔ ((𝑁 − 1) ∈ ℤ ∧ ¬ 0 ≤ (𝑁 − 1)))
2120simprbi 496 . . . . . 6 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) → ¬ 0 ≤ (𝑁 − 1))
2216, 19, 21syl2an 596 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ¬ 0 ≤ (𝑁 − 1))
23 zre 12615 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ ℝ)
2414, 15, 233syl 18 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
25 0red 11262 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
2624, 25ltnled 11406 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ ¬ 0 ≤ (𝑁 − 1)))
2726biimprd 248 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2827adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2922, 28mpd 15 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (𝑁 − 1) < 0)
30 0z 12622 . . . . . . 7 0 ∈ ℤ
31 zlem1lt 12667 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3214, 30, 31sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3332biimprd 248 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3433adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3529, 34mpd 15 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 ≤ 0)
36 nn0ge0 12549 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 12533 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3938, 25letri3d 11401 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
4039biimprd 248 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4140adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4235, 37, 41mp2and 699 . 2 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 = 0)
4313, 42impbii 209 1 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wnel 3044   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   < clt 11293  cle 11294  cmin 11490  cn 12264  0cn0 12524  cz 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612
This theorem is referenced by:  pthhashvtx  35112
  Copyright terms: Public domain W3C validator