Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nn0m1nnn0 Structured version   Visualization version   GIF version

Theorem 0nn0m1nnn0 35118
Description: A number is zero if and only if it's a nonnegative integer that becomes negative after subtracting 1. (Contributed by BTernaryTau, 30-Sep-2023.)
Assertion
Ref Expression
0nn0m1nnn0 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))

Proof of Theorem 0nn0m1nnn0
StepHypRef Expression
1 0nn0 12541 . . . 4 0 ∈ ℕ0
2 eleq1 2829 . . . 4 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
31, 2mpbiri 258 . . 3 (𝑁 = 0 → 𝑁 ∈ ℕ0)
4 1nn 12277 . . . . . 6 1 ∈ ℕ
5 0mnnnnn0 12558 . . . . . 6 (1 ∈ ℕ → (0 − 1) ∉ ℕ0)
64, 5ax-mp 5 . . . . 5 (0 − 1) ∉ ℕ0
7 oveq1 7438 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
8 neleq1 3052 . . . . . 6 ((𝑁 − 1) = (0 − 1) → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
97, 8syl 17 . . . . 5 (𝑁 = 0 → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
106, 9mpbiri 258 . . . 4 (𝑁 = 0 → (𝑁 − 1) ∉ ℕ0)
11 df-nel 3047 . . . 4 ((𝑁 − 1) ∉ ℕ0 ↔ ¬ (𝑁 − 1) ∈ ℕ0)
1210, 11sylib 218 . . 3 (𝑁 = 0 → ¬ (𝑁 − 1) ∈ ℕ0)
133, 12jca 511 . 2 (𝑁 = 0 → (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
14 nn0z 12638 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15 peano2zm 12660 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1614, 15syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
17 elnn0z 12626 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1817notbii 320 . . . . . . 7 (¬ (𝑁 − 1) ∈ ℕ0 ↔ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1918biimpi 216 . . . . . 6 (¬ (𝑁 − 1) ∈ ℕ0 → ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
20 annotanannot 835 . . . . . . 7 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) ↔ ((𝑁 − 1) ∈ ℤ ∧ ¬ 0 ≤ (𝑁 − 1)))
2120simprbi 496 . . . . . 6 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) → ¬ 0 ≤ (𝑁 − 1))
2216, 19, 21syl2an 596 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ¬ 0 ≤ (𝑁 − 1))
23 zre 12617 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ ℝ)
2414, 15, 233syl 18 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
25 0red 11264 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
2624, 25ltnled 11408 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ ¬ 0 ≤ (𝑁 − 1)))
2726biimprd 248 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2827adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2922, 28mpd 15 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (𝑁 − 1) < 0)
30 0z 12624 . . . . . . 7 0 ∈ ℤ
31 zlem1lt 12669 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3214, 30, 31sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3332biimprd 248 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3433adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3529, 34mpd 15 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 ≤ 0)
36 nn0ge0 12551 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 12535 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3938, 25letri3d 11403 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
4039biimprd 248 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4140adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4235, 37, 41mp2and 699 . 2 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 = 0)
4313, 42impbii 209 1 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wnel 3046   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  pthhashvtx  35133
  Copyright terms: Public domain W3C validator