Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nn0m1nnn0 Structured version   Visualization version   GIF version

Theorem 0nn0m1nnn0 32971
Description: A number is zero if and only if it's a nonnegative integer that becomes negative after subtracting 1. (Contributed by BTernaryTau, 30-Sep-2023.)
Assertion
Ref Expression
0nn0m1nnn0 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))

Proof of Theorem 0nn0m1nnn0
StepHypRef Expression
1 0nn0 12178 . . . 4 0 ∈ ℕ0
2 eleq1 2826 . . . 4 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
31, 2mpbiri 257 . . 3 (𝑁 = 0 → 𝑁 ∈ ℕ0)
4 1nn 11914 . . . . . 6 1 ∈ ℕ
5 0mnnnnn0 12195 . . . . . 6 (1 ∈ ℕ → (0 − 1) ∉ ℕ0)
64, 5ax-mp 5 . . . . 5 (0 − 1) ∉ ℕ0
7 oveq1 7262 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
8 neleq1 3053 . . . . . 6 ((𝑁 − 1) = (0 − 1) → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
97, 8syl 17 . . . . 5 (𝑁 = 0 → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
106, 9mpbiri 257 . . . 4 (𝑁 = 0 → (𝑁 − 1) ∉ ℕ0)
11 df-nel 3049 . . . 4 ((𝑁 − 1) ∉ ℕ0 ↔ ¬ (𝑁 − 1) ∈ ℕ0)
1210, 11sylib 217 . . 3 (𝑁 = 0 → ¬ (𝑁 − 1) ∈ ℕ0)
133, 12jca 511 . 2 (𝑁 = 0 → (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
14 nn0z 12273 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15 peano2zm 12293 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1614, 15syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
17 elnn0z 12262 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1817notbii 319 . . . . . . 7 (¬ (𝑁 − 1) ∈ ℕ0 ↔ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1918biimpi 215 . . . . . 6 (¬ (𝑁 − 1) ∈ ℕ0 → ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
20 annotanannot 831 . . . . . . 7 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) ↔ ((𝑁 − 1) ∈ ℤ ∧ ¬ 0 ≤ (𝑁 − 1)))
2120simprbi 496 . . . . . 6 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) → ¬ 0 ≤ (𝑁 − 1))
2216, 19, 21syl2an 595 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ¬ 0 ≤ (𝑁 − 1))
23 zre 12253 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ ℝ)
2414, 15, 233syl 18 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
25 0red 10909 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
2624, 25ltnled 11052 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ ¬ 0 ≤ (𝑁 − 1)))
2726biimprd 247 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2827adantr 480 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2922, 28mpd 15 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (𝑁 − 1) < 0)
30 0z 12260 . . . . . . 7 0 ∈ ℤ
31 zlem1lt 12302 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3214, 30, 31sylancl 585 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3332biimprd 247 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3433adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3529, 34mpd 15 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 ≤ 0)
36 nn0ge0 12188 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 12172 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3938, 25letri3d 11047 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
4039biimprd 247 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4140adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4235, 37, 41mp2and 695 . 2 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 = 0)
4313, 42impbii 208 1 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wnel 3048   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250
This theorem is referenced by:  pthhashvtx  32989
  Copyright terms: Public domain W3C validator