Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nn0m1nnn0 Structured version   Visualization version   GIF version

Theorem 0nn0m1nnn0 33464
Description: A number is zero if and only if it's a nonnegative integer that becomes negative after subtracting 1. (Contributed by BTernaryTau, 30-Sep-2023.)
Assertion
Ref Expression
0nn0m1nnn0 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))

Proof of Theorem 0nn0m1nnn0
StepHypRef Expression
1 0nn0 12362 . . . 4 0 ∈ ℕ0
2 eleq1 2826 . . . 4 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
31, 2mpbiri 258 . . 3 (𝑁 = 0 → 𝑁 ∈ ℕ0)
4 1nn 12098 . . . . . 6 1 ∈ ℕ
5 0mnnnnn0 12379 . . . . . 6 (1 ∈ ℕ → (0 − 1) ∉ ℕ0)
64, 5ax-mp 5 . . . . 5 (0 − 1) ∉ ℕ0
7 oveq1 7357 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
8 neleq1 3053 . . . . . 6 ((𝑁 − 1) = (0 − 1) → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
97, 8syl 17 . . . . 5 (𝑁 = 0 → ((𝑁 − 1) ∉ ℕ0 ↔ (0 − 1) ∉ ℕ0))
106, 9mpbiri 258 . . . 4 (𝑁 = 0 → (𝑁 − 1) ∉ ℕ0)
11 df-nel 3049 . . . 4 ((𝑁 − 1) ∉ ℕ0 ↔ ¬ (𝑁 − 1) ∈ ℕ0)
1210, 11sylib 217 . . 3 (𝑁 = 0 → ¬ (𝑁 − 1) ∈ ℕ0)
133, 12jca 513 . 2 (𝑁 = 0 → (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
14 nn0z 12457 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15 peano2zm 12477 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1614, 15syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
17 elnn0z 12446 . . . . . . . 8 ((𝑁 − 1) ∈ ℕ0 ↔ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1817notbii 320 . . . . . . 7 (¬ (𝑁 − 1) ∈ ℕ0 ↔ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
1918biimpi 215 . . . . . 6 (¬ (𝑁 − 1) ∈ ℕ0 → ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1)))
20 annotanannot 834 . . . . . . 7 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) ↔ ((𝑁 − 1) ∈ ℤ ∧ ¬ 0 ≤ (𝑁 − 1)))
2120simprbi 498 . . . . . 6 (((𝑁 − 1) ∈ ℤ ∧ ¬ ((𝑁 − 1) ∈ ℤ ∧ 0 ≤ (𝑁 − 1))) → ¬ 0 ≤ (𝑁 − 1))
2216, 19, 21syl2an 597 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ¬ 0 ≤ (𝑁 − 1))
23 zre 12437 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ ℝ)
2414, 15, 233syl 18 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
25 0red 11092 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
2624, 25ltnled 11236 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ ¬ 0 ≤ (𝑁 − 1)))
2726biimprd 248 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2827adantr 482 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (¬ 0 ≤ (𝑁 − 1) → (𝑁 − 1) < 0))
2922, 28mpd 15 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → (𝑁 − 1) < 0)
30 0z 12444 . . . . . . 7 0 ∈ ℤ
31 zlem1lt 12486 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3214, 30, 31sylancl 587 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 ↔ (𝑁 − 1) < 0))
3332biimprd 248 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3433adantr 482 . . . 4 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 − 1) < 0 → 𝑁 ≤ 0))
3529, 34mpd 15 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 ≤ 0)
36 nn0ge0 12372 . . . 4 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantr 482 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 12356 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3938, 25letri3d 11231 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
4039biimprd 248 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4140adantr 482 . . 3 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → ((𝑁 ≤ 0 ∧ 0 ≤ 𝑁) → 𝑁 = 0))
4235, 37, 41mp2and 698 . 2 ((𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0) → 𝑁 = 0)
4313, 42impbii 208 1 (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wnel 3048   class class class wbr 5104  (class class class)co 7350  cr 10984  0cc0 10985  1c1 10986   < clt 11123  cle 11124  cmin 11319  cn 12087  0cn0 12347  cz 12433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-nn 12088  df-n0 12348  df-z 12434
This theorem is referenced by:  pthhashvtx  33482
  Copyright terms: Public domain W3C validator