MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac2 Structured version   Visualization version   GIF version

Axiom ax-ac2 10475
Description: In order to avoid uses of ax-reg 9604 for derivation of AC equivalents, we provide ax-ac2 10475, which is equivalent to the standard AC of textbooks. This appears to be the shortest known equivalent to the standard AC when expressed in terms of set theory primitives. It was found by Kurt Maes as Theorem ackm 10477. We removed the leading quantifier to make it slightly shorter, since we have ax-gen 1795 available. The derivation of ax-ac2 10475 from ax-ac 10471 is shown by Theorem axac2 10478, and the reverse derivation by axac 10479. Note that we use ax-reg 9604 to derive ax-ac 10471 from ax-ac2 10475, but not to derive ax-ac2 10475 from ax-ac 10471. (Contributed by NM, 19-Dec-2016.)
Assertion
Ref Expression
ax-ac2 𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑣,𝑢

Detailed syntax breakdown of Axiom ax-ac2
StepHypRef Expression
1 vy . . . . . . . 8 setvar 𝑦
2 vx . . . . . . . 8 setvar 𝑥
31, 2wel 2109 . . . . . . 7 wff 𝑦𝑥
4 vz . . . . . . . . 9 setvar 𝑧
54, 1wel 2109 . . . . . . . 8 wff 𝑧𝑦
6 vv . . . . . . . . . . 11 setvar 𝑣
76, 2wel 2109 . . . . . . . . . 10 wff 𝑣𝑥
81, 6weq 1962 . . . . . . . . . . 11 wff 𝑦 = 𝑣
98wn 3 . . . . . . . . . 10 wff ¬ 𝑦 = 𝑣
107, 9wa 395 . . . . . . . . 9 wff (𝑣𝑥 ∧ ¬ 𝑦 = 𝑣)
114, 6wel 2109 . . . . . . . . 9 wff 𝑧𝑣
1210, 11wa 395 . . . . . . . 8 wff ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣)
135, 12wi 4 . . . . . . 7 wff (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))
143, 13wa 395 . . . . . 6 wff (𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣)))
153wn 3 . . . . . . 7 wff ¬ 𝑦𝑥
164, 2wel 2109 . . . . . . . 8 wff 𝑧𝑥
176, 4wel 2109 . . . . . . . . . 10 wff 𝑣𝑧
186, 1wel 2109 . . . . . . . . . 10 wff 𝑣𝑦
1917, 18wa 395 . . . . . . . . 9 wff (𝑣𝑧𝑣𝑦)
20 vu . . . . . . . . . . . 12 setvar 𝑢
2120, 4wel 2109 . . . . . . . . . . 11 wff 𝑢𝑧
2220, 1wel 2109 . . . . . . . . . . 11 wff 𝑢𝑦
2321, 22wa 395 . . . . . . . . . 10 wff (𝑢𝑧𝑢𝑦)
2420, 6weq 1962 . . . . . . . . . 10 wff 𝑢 = 𝑣
2523, 24wi 4 . . . . . . . . 9 wff ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)
2619, 25wa 395 . . . . . . . 8 wff ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))
2716, 26wi 4 . . . . . . 7 wff (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))
2815, 27wa 395 . . . . . 6 wff 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))
2914, 28wo 847 . . . . 5 wff ((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
3029, 20wal 1538 . . . 4 wff 𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
3130, 6wex 1779 . . 3 wff 𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
3231, 4wal 1538 . 2 wff 𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
3332, 1wex 1779 1 wff 𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
Colors of variables: wff setvar class
This axiom is referenced by:  axac3  10476
  Copyright terms: Public domain W3C validator