MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac3 Structured version   Visualization version   GIF version

Theorem ac3 10503
Description: Axiom of Choice using abbreviations. The logical equivalence to ax-ac 10500 can be established by chaining aceq0 10159 and aceq2 10160. A standard textbook version of AC is derived from this one in dfac2a 10171, and this version of AC is derived from the textbook version in dfac2b 10172, showing their logical equivalence (see dfac2 10173).

The following sketch will help you understand this version of the axiom. Given any set 𝑥, the axiom says that there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. Using the Axiom of Regularity, we can show that 𝑦 is really a set of ordered pairs, very similar to the ordered pair construction opthreg 9659. The key theorem for this (used in the proof of dfac2b 10172) is preleq 9657. With this modified definition of ordered pair, it can be seen that 𝑦 is actually a choice function on the members of 𝑥.

For example, suppose 𝑥 = {{1, 2}, {1, 3}, {2, 3, 4}}. Let us try 𝑦 = {{{1, 2}, 1}, {{1, 3}, 1}, {{2, 3, 4}, 2}}. For the member (of 𝑥) 𝑧 = {1, 2}, the only assignment to 𝑤 and 𝑣 that satisfies the axiom is 𝑤 = 1 and 𝑣 = {{1, 2}, 1}, so there is exactly one 𝑤 as required. We verify the other two members of 𝑥 similarly. Thus, 𝑦 satisfies the axiom. Using our modified ordered pair definition, we can say that 𝑦 corresponds to the choice function {⟨{1, 2}, 1⟩, ⟨{1, 3}, 1⟩, ⟨{2, 3, 4}, 2⟩}. Of course other choices for 𝑦 will also satisfy the axiom, for example 𝑦 = {{{1, 2}, 2}, {{1, 3}, 1}, {{2, 3, 4}, 4}}. What AC tells us is that there exists at least one such 𝑦, but it doesn't tell us which one.

(New usage is discouraged.) (Contributed by NM, 19-Jul-1996.)

Assertion
Ref Expression
ac3 𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem ac3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ac2 10502 . 2 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
2 aceq2 10160 . 2 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
31, 2mpbi 230 1 𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1778  wne 2939  wral 3060  wrex 3069  ∃!wreu 3377  c0 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-ac 10500
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-dif 3953  df-nul 4333
This theorem is referenced by:  axac2  10507
  Copyright terms: Public domain W3C validator