![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axac3 | Structured version Visualization version GIF version |
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10455 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
axac3 | ⊢ CHOICE |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ac2 10455 | . . 3 ⊢ ∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) |
3 | dfackm 10158 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤)))))) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ CHOICE |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 ∀wal 1540 ∃wex 1782 CHOICEwac 10107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-ac2 10455 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ac 10108 |
This theorem is referenced by: ackm 10457 axac 10459 axaci 10460 cardeqv 10461 fin71ac 10525 lbsex 20771 ptcls 23112 ptcmp 23554 axac10 41758 |
Copyright terms: Public domain | W3C validator |