MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axac3 Structured version   Visualization version   GIF version

Theorem axac3 10417
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10416 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.)
Assertion
Ref Expression
axac3 CHOICE

Proof of Theorem axac3
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ac2 10416 . . 3 𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤)))))
21ax-gen 1795 . 2 𝑥𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤)))))
3 dfackm 10120 . 2 (CHOICE ↔ ∀𝑥𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤))))))
42, 3mpbir 231 1 CHOICE
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538  wex 1779  CHOICEwac 10068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ac 10069
This theorem is referenced by:  ackm  10418  axac  10420  axaci  10421  cardeqv  10422  fin71ac  10486  lbsex  21075  ptcls  23503  ptcmp  23945  axac10  43022
  Copyright terms: Public domain W3C validator