![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axac3 | Structured version Visualization version GIF version |
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10501 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
axac3 | ⊢ CHOICE |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ac2 10501 | . . 3 ⊢ ∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) | |
2 | 1 | ax-gen 1792 | . 2 ⊢ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) |
3 | dfackm 10205 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤)))))) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ CHOICE |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∀wal 1535 ∃wex 1776 CHOICEwac 10153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-ac2 10501 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ac 10154 |
This theorem is referenced by: ackm 10503 axac 10505 axaci 10506 cardeqv 10507 fin71ac 10571 lbsex 21185 ptcls 23640 ptcmp 24082 axac10 43022 |
Copyright terms: Public domain | W3C validator |