MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axac3 Structured version   Visualization version   GIF version

Theorem axac3 10352
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10351 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.)
Assertion
Ref Expression
axac3 CHOICE

Proof of Theorem axac3
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ac2 10351 . . 3 𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤)))))
21ax-gen 1796 . 2 𝑥𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤)))))
3 dfackm 10055 . 2 (CHOICE ↔ ∀𝑥𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤))))))
42, 3mpbir 231 1 CHOICE
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1539  wex 1780  CHOICEwac 10003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-ac2 10351
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ac 10004
This theorem is referenced by:  ackm  10353  axac  10355  axaci  10356  cardeqv  10357  fin71ac  10421  lbsex  21100  ptcls  23529  ptcmp  23971  axac10  43065
  Copyright terms: Public domain W3C validator