Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axac3 | Structured version Visualization version GIF version |
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10106 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
axac3 | ⊢ CHOICE |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ac2 10106 | . . 3 ⊢ ∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) | |
2 | 1 | ax-gen 1803 | . 2 ⊢ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) |
3 | dfackm 9809 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤)))))) | |
4 | 2, 3 | mpbir 234 | 1 ⊢ CHOICE |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∨ wo 847 ∀wal 1541 ∃wex 1787 CHOICEwac 9758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-ac2 10106 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-id 5471 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-ac 9759 |
This theorem is referenced by: ackm 10108 axac 10110 axaci 10111 cardeqv 10112 fin71ac 10176 lbsex 20234 ptcls 22544 ptcmp 22986 axac10 40605 |
Copyright terms: Public domain | W3C validator |