Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axac3 | Structured version Visualization version GIF version |
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10265 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
axac3 | ⊢ CHOICE |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ac2 10265 | . . 3 ⊢ ∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) | |
2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) |
3 | dfackm 9968 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤)))))) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ CHOICE |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 845 ∀wal 1537 ∃wex 1779 CHOICEwac 9917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-ac2 10265 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ac 9918 |
This theorem is referenced by: ackm 10267 axac 10269 axaci 10270 cardeqv 10271 fin71ac 10335 lbsex 20472 ptcls 22812 ptcmp 23254 axac10 40893 |
Copyright terms: Public domain | W3C validator |