![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axac3 | Structured version Visualization version GIF version |
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10455 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
axac3 | ⊢ CHOICE |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ac2 10455 | . . 3 ⊢ ∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) | |
2 | 1 | ax-gen 1789 | . 2 ⊢ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤))))) |
3 | dfackm 10158 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑤∀𝑣((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧 ∈ 𝑤))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑧 ∧ 𝑤 ∈ 𝑦) ∧ ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) → 𝑣 = 𝑤)))))) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ CHOICE |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 ∀wal 1531 ∃wex 1773 CHOICEwac 10107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-ac2 10455 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-ac 10108 |
This theorem is referenced by: ackm 10457 axac 10459 axaci 10460 cardeqv 10461 fin71ac 10525 lbsex 21012 ptcls 23464 ptcmp 23906 axac10 42324 |
Copyright terms: Public domain | W3C validator |