MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axac3 Structured version   Visualization version   GIF version

Theorem axac3 10456
Description: This theorem asserts that the constant CHOICE is a theorem, thus eliminating it as a hypothesis while assuming ax-ac2 10455 as an axiom. (Contributed by Mario Carneiro, 6-May-2015.) (Revised by NM, 20-Dec-2016.) (Proof modification is discouraged.)
Assertion
Ref Expression
axac3 CHOICE

Proof of Theorem axac3
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-ac2 10455 . . 3 𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤)))))
21ax-gen 1789 . 2 𝑥𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤)))))
3 dfackm 10158 . 2 (CHOICE ↔ ∀𝑥𝑦𝑧𝑤𝑣((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑤𝑥 ∧ ¬ 𝑦 = 𝑤) ∧ 𝑧𝑤))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑤𝑧𝑤𝑦) ∧ ((𝑣𝑧𝑣𝑦) → 𝑣 = 𝑤))))))
42, 3mpbir 230 1 CHOICE
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844  wal 1531  wex 1773  CHOICEwac 10107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-ac2 10455
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ac 10108
This theorem is referenced by:  ackm  10457  axac  10459  axaci  10460  cardeqv  10461  fin71ac  10525  lbsex  21012  ptcls  23464  ptcmp  23906  axac10  42324
  Copyright terms: Public domain W3C validator