![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackm | Structured version Visualization version GIF version |
Description: A remarkable equivalent
to the Axiom of Choice that has only five
quantifiers (when expanded to use only the primitive predicates =
and ∈ and in prenex normal form),
discovered and proved by Kurt
Maes. This establishes a new record, reducing from 6 to 5 the largest
number of quantified variables needed by any ZFC axiom. The
ZF-equivalence to AC is shown by Theorem dfackm 10205. Maes found this
version of AC in April 2004 (replacing a longer version, also with five
quantifiers, that he found in November 2003). See Kurt Maes, "A
5-quantifier (∈ , =)-expression
ZF-equivalent to the Axiom of
Choice", https://doi.org/10.48550/arXiv.0705.3162 10205.
The original FOM posts are: http://www.cs.nyu.edu/pipermail/fom/2003-November/007631.html 10205 http://www.cs.nyu.edu/pipermail/fom/2003-November/007641.html 10205. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ackm | ⊢ ∀𝑥∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axac3 10502 | . 2 ⊢ CHOICE | |
2 | dfackm 10205 | . 2 ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))))) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ∀𝑥∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 CHOICEwac 10153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-ac2 10501 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ac 10154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |