MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackm Structured version   Visualization version   GIF version

Theorem ackm 10456
Description: A remarkable equivalent to the Axiom of Choice that has only five quantifiers (when expanded to use only the primitive predicates = and and in prenex normal form), discovered and proved by Kurt Maes. This establishes a new record, reducing from 6 to 5 the largest number of quantified variables needed by any ZFC axiom. The ZF-equivalence to AC is shown by Theorem dfackm 10157. Maes found this version of AC in April 2004 (replacing a longer version, also with five quantifiers, that he found in November 2003). See Kurt Maes, "A 5-quantifier (∈ , =)-expression ZF-equivalent to the Axiom of Choice", https://doi.org/10.48550/arXiv.0705.3162 10157.

The original FOM posts are: http://www.cs.nyu.edu/pipermail/fom/2003-November/007631.html 10157 http://www.cs.nyu.edu/pipermail/fom/2003-November/007641.html 10157. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) (Proof modification is discouraged.)

Assertion
Ref Expression
ackm 𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem ackm
StepHypRef Expression
1 axac3 10455 . 2 CHOICE
2 dfackm 10157 . 2 (CHOICE ↔ ∀𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣))))))
31, 2mpbi 229 1 𝑥𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  wal 1539   = wceq 1541  wex 1781  wcel 2106  CHOICEwac 10106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ac 10107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator