Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-ac | Structured version Visualization version GIF version |
Description: Axiom of Choice. The
Axiom of Choice (AC) is usually considered an
extension of ZF set theory rather than a proper part of it. It is
sometimes considered philosophically controversial because it asserts
the existence of a set without telling us what the set is. ZF set
theory that includes AC is called ZFC.
The unpublished version given here says that given any set 𝑥, there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. See the rewritten version ac3 10149 for a more detailed explanation. Theorem ac2 10148 shows an equivalent written compactly with restricted quantifiers. This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 10152 is slightly shorter when the biconditional of ax-ac 10146 is expanded into implication and negation. In axac3 10151 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 10368 (the Generalized Continuum Hypothesis implies the Axiom of Choice). Standard textbook versions of AC are derived as ac8 10179, ac5 10164, and ac7 10160. The Axiom of Regularity ax-reg 9281 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as Theorem dfac2b 9817. Equivalents to AC are the well-ordering theorem weth 10182 and Zorn's lemma zorn 10194. See ac4 10162 for comments about stronger versions of AC. In order to avoid uses of ax-reg 9281 for derivation of AC equivalents, we provide ax-ac2 10150 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 10150 from ax-ac 10146 is shown by Theorem axac2 10153, and the reverse derivation by axac 10154. Therefore, new proofs should normally use ax-ac2 10150 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.) |
Ref | Expression |
---|---|
ax-ac | ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vz | . . . . . . 7 setvar 𝑧 | |
2 | vw | . . . . . . 7 setvar 𝑤 | |
3 | 1, 2 | wel 2109 | . . . . . 6 wff 𝑧 ∈ 𝑤 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 2, 4 | wel 2109 | . . . . . 6 wff 𝑤 ∈ 𝑥 |
6 | 3, 5 | wa 395 | . . . . 5 wff (𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) |
7 | vu | . . . . . . . . . . . 12 setvar 𝑢 | |
8 | 7, 2 | wel 2109 | . . . . . . . . . . 11 wff 𝑢 ∈ 𝑤 |
9 | vt | . . . . . . . . . . . 12 setvar 𝑡 | |
10 | 2, 9 | wel 2109 | . . . . . . . . . . 11 wff 𝑤 ∈ 𝑡 |
11 | 8, 10 | wa 395 | . . . . . . . . . 10 wff (𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) |
12 | 7, 9 | wel 2109 | . . . . . . . . . . 11 wff 𝑢 ∈ 𝑡 |
13 | vy | . . . . . . . . . . . 12 setvar 𝑦 | |
14 | 9, 13 | wel 2109 | . . . . . . . . . . 11 wff 𝑡 ∈ 𝑦 |
15 | 12, 14 | wa 395 | . . . . . . . . . 10 wff (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦) |
16 | 11, 15 | wa 395 | . . . . . . . . 9 wff ((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) |
17 | 16, 9 | wex 1783 | . . . . . . . 8 wff ∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) |
18 | vv | . . . . . . . . 9 setvar 𝑣 | |
19 | 7, 18 | weq 1967 | . . . . . . . 8 wff 𝑢 = 𝑣 |
20 | 17, 19 | wb 205 | . . . . . . 7 wff (∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) |
21 | 20, 7 | wal 1537 | . . . . . 6 wff ∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) |
22 | 21, 18 | wex 1783 | . . . . 5 wff ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣) |
23 | 6, 22 | wi 4 | . . . 4 wff ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) |
24 | 23, 2 | wal 1537 | . . 3 wff ∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) |
25 | 24, 1 | wal 1537 | . 2 wff ∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) |
26 | 25, 13 | wex 1783 | 1 wff ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) |
Colors of variables: wff setvar class |
This axiom is referenced by: zfac 10147 ac2 10148 |
Copyright terms: Public domain | W3C validator |