MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac Structured version   Visualization version   GIF version

Axiom ax-ac 10357
Description: Axiom of Choice. The Axiom of Choice (AC) is usually considered an extension of ZF set theory rather than a proper part of it. It is sometimes considered philosophically controversial because it asserts the existence of a set without telling us what the set is. ZF set theory that includes AC is called ZFC.

The unpublished version given here says that given any set 𝑥, there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. See the rewritten version ac3 10360 for a more detailed explanation. Theorem ac2 10359 shows an equivalent written compactly with restricted quantifiers.

This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 10363 is slightly shorter when the biconditional of ax-ac 10357 is expanded into implication and negation. In axac3 10362 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 10579 (the Generalized Continuum Hypothesis implies the Axiom of Choice).

Standard textbook versions of AC are derived as ac8 10390, ac5 10375, and ac7 10371. The Axiom of Regularity ax-reg 9485 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as Theorem dfac2b 10029. Equivalents to AC are the well-ordering theorem weth 10393 and Zorn's lemma zorn 10405. See ac4 10373 for comments about stronger versions of AC.

In order to avoid uses of ax-reg 9485 for derivation of AC equivalents, we provide ax-ac2 10361 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 10361 from ax-ac 10357 is shown by Theorem axac2 10364, and the reverse derivation by axac 10365. Therefore, new proofs should normally use ax-ac2 10361 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)

Assertion
Ref Expression
ax-ac 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡

Detailed syntax breakdown of Axiom ax-ac
StepHypRef Expression
1 vz . . . . . . 7 setvar 𝑧
2 vw . . . . . . 7 setvar 𝑤
31, 2wel 2114 . . . . . 6 wff 𝑧𝑤
4 vx . . . . . . 7 setvar 𝑥
52, 4wel 2114 . . . . . 6 wff 𝑤𝑥
63, 5wa 395 . . . . 5 wff (𝑧𝑤𝑤𝑥)
7 vu . . . . . . . . . . . 12 setvar 𝑢
87, 2wel 2114 . . . . . . . . . . 11 wff 𝑢𝑤
9 vt . . . . . . . . . . . 12 setvar 𝑡
102, 9wel 2114 . . . . . . . . . . 11 wff 𝑤𝑡
118, 10wa 395 . . . . . . . . . 10 wff (𝑢𝑤𝑤𝑡)
127, 9wel 2114 . . . . . . . . . . 11 wff 𝑢𝑡
13 vy . . . . . . . . . . . 12 setvar 𝑦
149, 13wel 2114 . . . . . . . . . . 11 wff 𝑡𝑦
1512, 14wa 395 . . . . . . . . . 10 wff (𝑢𝑡𝑡𝑦)
1611, 15wa 395 . . . . . . . . 9 wff ((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦))
1716, 9wex 1780 . . . . . . . 8 wff 𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦))
18 vv . . . . . . . . 9 setvar 𝑣
197, 18weq 1963 . . . . . . . 8 wff 𝑢 = 𝑣
2017, 19wb 206 . . . . . . 7 wff (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
2120, 7wal 1539 . . . . . 6 wff 𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
2221, 18wex 1780 . . . . 5 wff 𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)
236, 22wi 4 . . . 4 wff ((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2423, 2wal 1539 . . 3 wff 𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2524, 1wal 1539 . 2 wff 𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
2625, 13wex 1780 1 wff 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
Colors of variables: wff setvar class
This axiom is referenced by:  zfac  10358  ac2  10359
  Copyright terms: Public domain W3C validator