Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-wl-cleq Structured version   Visualization version   GIF version

Axiom ax-wl-cleq 37486
Description: Disclaimer: The material presented here is just my (WL's) personal perception. I am not an expert in this field, so some or all of the text here can be misleading, or outright wrong.

This text should be read as an exploration rather than as a definite statement, open to doubt, alternatives, and reinterpretation.

At the point where df-cleq 2732 is introduced, the foundations of set theory are being established through the notion of a class. A central property of classes is what elements, expressed by the membership operator , belong to them . Quantification (𝑥) applies only to objects that a variable of kind setvar can represent. These objects will henceforth be called sets. Some classes may not be sets; these are called proper classes. It remains open at this stage whether membership can involve them.

The formula given in df-cleq 2732 (restated below) asserts that two classes are equal if and only if they have exactly the same sets as elements. If proper classes are also admitted as elements, then two equal classes could still differ by such elements, potentially violating Leibniz's Law. A future axiom df-clel 2819 addresses this issue; df-cleq 2732 alone does not.

**Primitive connectives and class builders**

Specially crafted primitive operators on classes or class builders could introduce properties of classes beyond membership, not reflected in the formula here. This again risks violating Leibniz's Law. Therefore, the introduction of any future primitive operator or class builder must include a conservativity check to ensure consistency with Leibniz's Law.

**This axiom covers only some principles of equality**

The notion of equality expressed in this axiom does not automatically coincide with the general notion of equality. Some principles are, however, already captured: Equality is shown to be an equivalence relation, covering transivity (eqtr 2763), reflexivity (eqid 2740) and symmetry (eqcom 2747). It also yields the class-level version of ax-ext 2711 (the backward direction of df-cleq 2732) holds.

If we assume 𝑥 = 𝐴 holds, then substituting the free set variable 𝑦 with 𝐴 in ax6ev 1969 and ax12v2 2180 yields provable theorems (see wl-isseteq 37489, and wl-ax12v2cl 37490). However, a bound variable cannot be replaced with a class variable, since quantification over classes is not permitted. Taken together with the results from the previous paragraph, this shows that a class variable equal to a set behaves the same as a set variable, provided it is not quantified.

**Conservativity**

Moreover, this axiom is already partly derivable if all class variables are replaced by variables of type "setvar". In that case, the statement reduces to an instance of axextb 2714. This shows that the class builder cv 1536 is consistent with this axiom.

**Eliminable operator**

Finally, this axiom supports the idea that proper classes, and operators between them, should be eliminable, as required by ZF: It reduces equality to their membership properties. However, since the term 𝑥𝐴 is still undefined, elimination reduces equality to just something not yet clarified.

**Axiom vs Definition**

Up to this point, the only content involving class variables comes from the syntax definitions wceq 1537 and wcel 2108. Axioms are therefore required to progressively refine the semantics of classes until provable results coincide with our intended conception of set theory. This refinement process is explained in Step 4 of wl-cleq-2 37483.

From this perspective, df-cleq 2732 is in fact an axiom in disguise and would more appropriately be named ax-cleq.

At first glance, one might think that 𝐴 = 𝐵 is defined by the right-hand side of the biconditional. This would make 𝑥𝐴, i.e. membership of a set in a class, the more primitive concept, from which equality of classes could be derived. Such a viewpoint would be coherent if the properties of membership could be fully determined by other axioms. In my (WL's') opinion, however, the more direct and fruitful approach is not to construct class equality from membership, but to treat equality itself as axiomatic.

(Contributed by Wolf Lammen, 25-Aug-2025.)

Assertion
Ref Expression
ax-wl-cleq (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Axiom ax-wl-cleq
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2wceq 1537 . 2 wff 𝐴 = 𝐵
4 vx . . . . . 6 setvar 𝑥
54cv 1536 . . . . 5 class 𝑥
65, 1wcel 2108 . . . 4 wff 𝑥𝐴
75, 2wcel 2108 . . . 4 wff 𝑥𝐵
86, 7wb 206 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4wal 1535 . 2 wff 𝑥(𝑥𝐴𝑥𝐵)
103, 9wb 206 1 wff (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
This axiom is referenced by: (None)
  Copyright terms: Public domain W3C validator