Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version |
Description: At least one individual exists. Weaker version of ax6e 2391. When possible, use of this theorem rather than ax6e 2391 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1972 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | df-ex 1783 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 234 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1971 |
This theorem depends on definitions: df-bi 210 df-ex 1783 |
This theorem is referenced by: spimehOLD 1976 exgenOLD 1980 equs4v 2007 alequexv 2008 equsv 2010 equsexvwOLD 2013 equid 2020 ax6evr 2023 aeveq 2062 sbcom2 2166 spimedv 2196 spimfv 2240 equsalv 2266 equsexv 2267 ax6e 2391 axc15 2434 sb4b 2489 sb4bOLD 2490 dfeumo 2555 euequ 2618 dfdif3 4021 dmi 5760 1st2val 7719 2nd2val 7720 bnj1468 32336 bj-ssbeq 34370 bj-ax12 34374 bj-equsexval 34377 bj-ssbid2ALT 34380 bj-ax6elem2 34384 bj-eqs 34392 bj-spimtv 34502 bj-dtrucor2v 34526 bj-sbievw1 34555 bj-sbievw 34557 wl-equsalvw 35213 wl-sbcom2d 35232 wl-euequf 35245 wl-dfclab 35263 axc11n-16 36504 ax12eq 36507 ax12el 36508 ax12inda 36514 ax12v2-o 36515 sn-el 39691 relexp0eq 40765 ax6e2eq 41626 relopabVD 41970 ax6e2eqVD 41976 |
Copyright terms: Public domain | W3C validator |