![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version |
Description: At least one individual exists. Weaker version of ax6e 2388. When possible, use of this theorem rather than ax6e 2388 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1968 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | df-ex 1779 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-ex 1779 |
This theorem is referenced by: equs4v 1999 alequexv 2000 equsv 2002 equid 2011 ax6evr 2014 aeveq 2056 sbcom2 2173 spimedv 2197 spimfv 2239 equsalv 2267 ax6e 2388 axc15 2427 sb4b 2480 dfeumo 2537 euequ 2597 dfdif3OLD 4131 exel 5447 dmi 5939 1st2val 8050 2nd2val 8051 bnj1468 34853 in-ax8 36219 ss-ax8 36220 bj-ssbeq 36648 bj-ax12 36652 bj-equsexval 36655 bj-ssbid2ALT 36658 bj-ax6elem2 36662 bj-eqs 36670 bj-equsvt 36774 bj-spimtv 36789 bj-dtrucor2v 36812 bj-sbievw1 36840 bj-sbievw 36842 wl-isseteq 37500 wl-equsalvw 37533 wl-equsaldv 37535 wl-sbcom2d 37556 wl-euequf 37569 wl-dfclab 37591 axc11n-16 38934 ax12eq 38937 ax12el 38938 ax12inda 38944 ax12v2-o 38945 sn-exelALT 42250 relexp0eq 43707 ax6e2eq 44570 relopabVD 44914 ax6e2eqVD 44920 dtrucor3 48686 |
Copyright terms: Public domain | W3C validator |