![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version |
Description: At least one individual exists. Weaker version of ax6e 2383. When possible, use of this theorem rather than ax6e 2383 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1973 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | df-ex 1783 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: equs4v 2004 alequexv 2005 equsv 2007 equid 2016 ax6evr 2019 aeveq 2060 sbcom2 2162 spimedv 2191 spimfv 2233 equsalv 2259 ax6e 2383 axc15 2422 sb4b 2475 dfeumo 2532 euequ 2592 dfdif3 4115 exel 5434 dmi 5922 1st2val 8003 2nd2val 8004 bnj1468 33857 bj-ssbeq 35530 bj-ax12 35534 bj-equsexval 35537 bj-ssbid2ALT 35540 bj-ax6elem2 35544 bj-eqs 35552 bj-equsvt 35657 bj-spimtv 35672 bj-dtrucor2v 35695 bj-sbievw1 35724 bj-sbievw 35726 wl-equsalvw 36407 wl-sbcom2d 36426 wl-euequf 36439 wl-dfclab 36458 axc11n-16 37808 ax12eq 37811 ax12el 37812 ax12inda 37818 ax12v2-o 37819 sn-exelALT 41035 relexp0eq 42452 ax6e2eq 43318 relopabVD 43662 ax6e2eqVD 43668 dtrucor3 47484 |
Copyright terms: Public domain | W3C validator |