![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version |
Description: At least one individual exists. Weaker version of ax6e 2385. When possible, use of this theorem rather than ax6e 2385 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1968 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | df-ex 1778 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: equs4v 1999 alequexv 2000 equsv 2002 equid 2011 ax6evr 2014 aeveq 2056 sbcom2 2169 spimedv 2193 spimfv 2235 equsalv 2262 ax6e 2385 axc15 2424 sb4b 2477 dfeumo 2534 euequ 2594 dfdif3OLD 4135 exel 5456 dmi 5945 1st2val 8054 2nd2val 8055 bnj1468 34814 gg-ax8 36143 bj-ssbeq 36567 bj-ax12 36571 bj-equsexval 36574 bj-ssbid2ALT 36577 bj-ax6elem2 36581 bj-eqs 36589 bj-equsvt 36693 bj-spimtv 36708 bj-dtrucor2v 36731 bj-sbievw1 36759 bj-sbievw 36761 wl-equsalvw 37440 wl-equsaldv 37442 wl-sbcom2d 37463 wl-euequf 37476 wl-dfclab 37498 axc11n-16 38842 ax12eq 38845 ax12el 38846 ax12inda 38852 ax12v2-o 38853 sn-exelALT 42160 relexp0eq 43603 ax6e2eq 44468 relopabVD 44812 ax6e2eqVD 44818 dtrucor3 48450 |
Copyright terms: Public domain | W3C validator |