| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version | ||
| Description: At least one individual exists. Weaker version of ax6e 2381. When possible, use of this theorem rather than ax6e 2381 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1968 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | df-ex 1780 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equs4v 2000 alequexv 2001 equsv 2003 equid 2012 ax6evr 2015 aeveq 2057 sbcom2 2174 spimedv 2198 spimfv 2240 equsalv 2268 ax6e 2381 axc15 2420 sb4b 2473 dfeumo 2530 euequ 2590 dfdif3OLD 4069 exel 5377 dmi 5864 1st2val 7952 2nd2val 7953 bnj1468 34819 in-ax8 36208 ss-ax8 36209 bj-ssbeq 36637 bj-ax12 36641 bj-equsexval 36644 bj-ssbid2ALT 36647 bj-ax6elem2 36651 bj-eqs 36659 bj-equsvt 36763 bj-spimtv 36778 bj-dtrucor2v 36801 bj-sbievw1 36829 bj-sbievw 36831 wl-isseteq 37489 wl-equsalvw 37522 wl-equsaldv 37524 wl-sbcom2d 37545 wl-euequf 37558 wl-dfclab 37580 axc11n-16 38927 ax12eq 38930 ax12el 38931 ax12inda 38937 ax12v2-o 38938 sn-exelALT 42201 relexp0eq 43684 ax6e2eq 44541 relopabVD 44884 ax6e2eqVD 44890 ormkglobd 46866 dtrucor3 48793 |
| Copyright terms: Public domain | W3C validator |