| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version | ||
| Description: At least one individual exists. Weaker version of ax6e 2386. When possible, use of this theorem rather than ax6e 2386 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1967 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | df-ex 1779 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1966 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: equs4v 1998 alequexv 1999 equsv 2001 equid 2010 ax6evr 2013 aeveq 2055 sbcom2 2172 spimedv 2196 spimfv 2238 equsalv 2266 ax6e 2386 axc15 2425 sb4b 2478 dfeumo 2535 euequ 2595 dfdif3OLD 4098 exel 5418 dmi 5912 1st2val 8024 2nd2val 8025 bnj1468 34819 in-ax8 36184 ss-ax8 36185 bj-ssbeq 36613 bj-ax12 36617 bj-equsexval 36620 bj-ssbid2ALT 36623 bj-ax6elem2 36627 bj-eqs 36635 bj-equsvt 36739 bj-spimtv 36754 bj-dtrucor2v 36777 bj-sbievw1 36805 bj-sbievw 36807 wl-isseteq 37465 wl-equsalvw 37498 wl-equsaldv 37500 wl-sbcom2d 37521 wl-euequf 37534 wl-dfclab 37556 axc11n-16 38898 ax12eq 38901 ax12el 38902 ax12inda 38908 ax12v2-o 38909 sn-exelALT 42216 relexp0eq 43676 ax6e2eq 44534 relopabVD 44878 ax6e2eqVD 44884 ormkglobd 46847 dtrucor3 48677 |
| Copyright terms: Public domain | W3C validator |