![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version |
Description: At least one individual exists. Weaker version of ax6e 2377. When possible, use of this theorem rather than ax6e 2377 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1965 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | df-ex 1775 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1532 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1964 |
This theorem depends on definitions: df-bi 206 df-ex 1775 |
This theorem is referenced by: equs4v 1996 alequexv 1997 equsv 1999 equid 2008 ax6evr 2011 aeveq 2052 sbcom2 2154 spimedv 2183 spimfv 2225 equsalv 2251 ax6e 2377 axc15 2416 sb4b 2469 dfeumo 2526 euequ 2586 dfdif3 4110 exel 5429 dmi 5918 1st2val 8015 2nd2val 8016 bnj1468 34413 bj-ssbeq 36065 bj-ax12 36069 bj-equsexval 36072 bj-ssbid2ALT 36075 bj-ax6elem2 36079 bj-eqs 36087 bj-equsvt 36192 bj-spimtv 36207 bj-dtrucor2v 36230 bj-sbievw1 36258 bj-sbievw 36260 wl-equsalvw 36941 wl-sbcom2d 36963 wl-euequf 36976 wl-dfclab 36998 axc11n-16 38347 ax12eq 38350 ax12el 38351 ax12inda 38357 ax12v2-o 38358 sn-exelALT 41626 relexp0eq 43054 ax6e2eq 43919 relopabVD 44263 ax6e2eqVD 44269 dtrucor3 47794 |
Copyright terms: Public domain | W3C validator |