| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version | ||
| Description: At least one individual exists. Weaker version of ax6e 2381. When possible, use of this theorem rather than ax6e 2381 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1968 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | df-ex 1780 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equs4v 2000 alequexv 2001 equsv 2003 equid 2012 ax6evr 2015 aeveq 2057 sbcom2 2174 spimedv 2198 spimfv 2240 equsalv 2268 ax6e 2381 axc15 2420 sb4b 2473 dfeumo 2530 euequ 2590 dfdif3OLD 4077 exel 5388 dmi 5875 1st2val 7975 2nd2val 7976 bnj1468 34829 in-ax8 36205 ss-ax8 36206 bj-ssbeq 36634 bj-ax12 36638 bj-equsexval 36641 bj-ssbid2ALT 36644 bj-ax6elem2 36648 bj-eqs 36656 bj-equsvt 36760 bj-spimtv 36775 bj-dtrucor2v 36798 bj-sbievw1 36826 bj-sbievw 36828 wl-isseteq 37486 wl-equsalvw 37519 wl-equsaldv 37521 wl-sbcom2d 37542 wl-euequf 37555 wl-dfclab 37577 axc11n-16 38924 ax12eq 38927 ax12el 38928 ax12inda 38934 ax12v2-o 38935 sn-exelALT 42199 relexp0eq 43683 ax6e2eq 44540 relopabVD 44883 ax6e2eqVD 44889 ormkglobd 46866 dtrucor3 48780 |
| Copyright terms: Public domain | W3C validator |