Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version |
Description: At least one individual exists. Weaker version of ax6e 2383. When possible, use of this theorem rather than ax6e 2383 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1973 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | df-ex 1784 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: equs4v 2004 alequexv 2005 equsv 2007 equid 2016 ax6evr 2019 aeveq 2060 sbcom2 2163 spimedv 2193 spimfv 2235 equsalv 2262 ax6e 2383 axc15 2422 sb4b 2475 sb4bOLD 2476 dfeumo 2537 euequ 2597 dfdif3 4045 dmi 5819 1st2val 7832 2nd2val 7833 bnj1468 32726 bj-ssbeq 34761 bj-ax12 34765 bj-equsexval 34768 bj-ssbid2ALT 34771 bj-ax6elem2 34775 bj-eqs 34783 bj-equsvt 34888 bj-spimtv 34903 bj-dtrucor2v 34927 bj-sbievw1 34956 bj-sbievw 34958 wl-equsalvw 35624 wl-sbcom2d 35643 wl-euequf 35656 wl-dfclab 35674 axc11n-16 36879 ax12eq 36882 ax12el 36883 ax12inda 36889 ax12v2-o 36890 sn-el 40115 relexp0eq 41198 ax6e2eq 42066 relopabVD 42410 ax6e2eqVD 42416 dtrucor3 46032 |
Copyright terms: Public domain | W3C validator |