| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version | ||
| Description: At least one individual exists. Weaker version of ax6e 2382. When possible, use of this theorem rather than ax6e 2382 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1968 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | df-ex 1780 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equs4v 2000 alequexv 2001 equsv 2003 equid 2012 ax6evr 2015 aeveq 2057 sbcom2 2174 spimedv 2198 spimfv 2240 equsalv 2268 ax6e 2382 axc15 2421 sb4b 2474 dfeumo 2531 euequ 2591 dfdif3OLD 4089 exel 5401 dmi 5893 1st2val 8005 2nd2val 8006 bnj1468 34844 in-ax8 36209 ss-ax8 36210 bj-ssbeq 36638 bj-ax12 36642 bj-equsexval 36645 bj-ssbid2ALT 36648 bj-ax6elem2 36652 bj-eqs 36660 bj-equsvt 36764 bj-spimtv 36779 bj-dtrucor2v 36802 bj-sbievw1 36830 bj-sbievw 36832 wl-isseteq 37490 wl-equsalvw 37523 wl-equsaldv 37525 wl-sbcom2d 37546 wl-euequf 37559 wl-dfclab 37581 axc11n-16 38923 ax12eq 38926 ax12el 38927 ax12inda 38933 ax12v2-o 38934 sn-exelALT 42198 relexp0eq 43662 ax6e2eq 44519 relopabVD 44862 ax6e2eqVD 44868 ormkglobd 46846 dtrucor3 48720 |
| Copyright terms: Public domain | W3C validator |