| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version | ||
| Description: At least one individual exists. Weaker version of ax6e 2383. When possible, use of this theorem rather than ax6e 2383 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1969 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | df-ex 1781 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: equs4v 2001 alequexv 2002 equsv 2004 equid 2013 ax6evr 2016 aeveq 2059 sbcom2 2176 spimedv 2200 spimfv 2242 equsalv 2270 ax6e 2383 axc15 2422 sb4b 2475 dfeumo 2532 euequ 2592 dfdif3OLD 4065 exel 5374 dmi 5860 1st2val 7949 2nd2val 7950 bnj1468 34858 in-ax8 36268 ss-ax8 36269 bj-ssbeq 36697 bj-ax12 36701 bj-equsexval 36704 bj-ssbid2ALT 36707 bj-ax6elem2 36711 bj-eqs 36719 bj-equsvt 36823 bj-spimtv 36838 bj-dtrucor2v 36861 bj-sbievw1 36889 bj-sbievw 36891 wl-isseteq 37549 wl-equsalvw 37582 wl-equsaldv 37584 wl-sbcom2d 37605 wl-euequf 37618 wl-dfclab 37629 axc11n-16 39036 ax12eq 39039 ax12el 39040 ax12inda 39046 ax12v2-o 39047 sn-exelALT 42310 relexp0eq 43793 ax6e2eq 44649 relopabVD 44992 ax6e2eqVD 44998 ormkglobd 46972 dtrucor3 48898 |
| Copyright terms: Public domain | W3C validator |