| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version | ||
| Description: At least one individual exists. Weaker version of ax6e 2382. When possible, use of this theorem rather than ax6e 2382 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
| Ref | Expression |
|---|---|
| ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1968 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | df-ex 1780 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: equs4v 2000 alequexv 2001 equsv 2003 equid 2012 ax6evr 2015 aeveq 2057 sbcom2 2174 spimedv 2198 spimfv 2240 equsalv 2268 ax6e 2382 axc15 2421 sb4b 2474 dfeumo 2531 euequ 2591 dfdif3OLD 4083 exel 5395 dmi 5887 1st2val 7998 2nd2val 7999 bnj1468 34842 in-ax8 36207 ss-ax8 36208 bj-ssbeq 36636 bj-ax12 36640 bj-equsexval 36643 bj-ssbid2ALT 36646 bj-ax6elem2 36650 bj-eqs 36658 bj-equsvt 36762 bj-spimtv 36777 bj-dtrucor2v 36800 bj-sbievw1 36828 bj-sbievw 36830 wl-isseteq 37488 wl-equsalvw 37521 wl-equsaldv 37523 wl-sbcom2d 37544 wl-euequf 37557 wl-dfclab 37579 axc11n-16 38926 ax12eq 38929 ax12el 38930 ax12inda 38936 ax12v2-o 38937 sn-exelALT 42201 relexp0eq 43683 ax6e2eq 44540 relopabVD 44883 ax6e2eqVD 44889 ormkglobd 46866 dtrucor3 48777 |
| Copyright terms: Public domain | W3C validator |