![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6ev | Structured version Visualization version GIF version |
Description: At least one individual exists. Weaker version of ax6e 2376. When possible, use of this theorem rather than ax6e 2376 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1964 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | df-ex 1774 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1531 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1963 |
This theorem depends on definitions: df-bi 206 df-ex 1774 |
This theorem is referenced by: equs4v 1995 alequexv 1996 equsv 1998 equid 2007 ax6evr 2010 aeveq 2051 sbcom2 2162 spimedv 2185 spimfv 2227 equsalv 2253 ax6e 2376 axc15 2415 sb4b 2468 dfeumo 2525 euequ 2585 dfdif3 4111 exel 5434 dmi 5923 1st2val 8020 2nd2val 8021 bnj1468 34547 bj-ssbeq 36199 bj-ax12 36203 bj-equsexval 36206 bj-ssbid2ALT 36209 bj-ax6elem2 36213 bj-eqs 36221 bj-equsvt 36326 bj-spimtv 36341 bj-dtrucor2v 36364 bj-sbievw1 36392 bj-sbievw 36394 wl-equsalvw 37075 wl-equsaldv 37077 wl-sbcom2d 37098 wl-euequf 37111 wl-dfclab 37133 axc11n-16 38479 ax12eq 38482 ax12el 38483 ax12inda 38489 ax12v2-o 38490 sn-exelALT 41775 relexp0eq 43196 ax6e2eq 44061 relopabVD 44405 ax6e2eqVD 44411 dtrucor3 47983 |
Copyright terms: Public domain | W3C validator |