MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12v2 Structured version   Visualization version   GIF version

Theorem ax12v2 2175
Description: It is possible to remove any restriction on 𝜑 in ax12v 2174. Same as Axiom C8 of [Monk2] p. 105. Use ax12v 2174 instead when sufficient. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-10 2139 and ax-13 2372. (Revised by Jim Kingdon, 15-Dec-2017.) (Proof shortened by Wolf Lammen, 8-Dec-2019.)
Assertion
Ref Expression
ax12v2 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax12v2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equtrr 2026 . . 3 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
2 ax12v 2174 . . . 4 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
31imim1d 82 . . . . 5 (𝑦 = 𝑧 → ((𝑥 = 𝑧𝜑) → (𝑥 = 𝑦𝜑)))
43alimdv 1920 . . . 4 (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑧𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
52, 4syl9r 78 . . 3 (𝑦 = 𝑧 → (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
61, 5syld 47 . 2 (𝑦 = 𝑧 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
7 ax6evr 2019 . 2 𝑧 𝑦 = 𝑧
86, 7exlimiiv 1935 1 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  sbalex  2238  equs5av  2274  wl-lem-exsb  35648  wl-lem-moexsb  35650
  Copyright terms: Public domain W3C validator