Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqcom | Structured version Visualization version GIF version |
Description: Commutative law for class equality. Theorem 6.5 of [Quine] p. 41. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
eqcom | ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1 | eqcomd 2764 | . 2 ⊢ (𝐴 = 𝐵 → 𝐵 = 𝐴) |
3 | id 22 | . . 3 ⊢ (𝐵 = 𝐴 → 𝐵 = 𝐴) | |
4 | 3 | eqcomd 2764 | . 2 ⊢ (𝐵 = 𝐴 → 𝐴 = 𝐵) |
5 | 2, 4 | impbii 212 | 1 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
Copyright terms: Public domain | W3C validator |