Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-isseteq Structured version   Visualization version   GIF version

Theorem wl-isseteq 37489
Description: A class equal to a set variable implies it is a set. Note that 𝐴 may be dependent on 𝑥. The consequent, resembling ax6ev 1969, is the accepted expression for the idea of a class being a set. Sometimes a simpler expression like the antecedent here, or in elisset 2826, is already sufficient to mark a class variable as a set. (Contributed by Wolf Lammen, 7-Sep-2025.)
Assertion
Ref Expression
wl-isseteq (𝑥 = 𝐴 → ∃𝑦 𝑦 = 𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem wl-isseteq
StepHypRef Expression
1 ax6ev 1969 . 2 𝑦 𝑦 = 𝑥
2 eqeq2 2752 . . . 4 (𝑥 = 𝐴 → (𝑦 = 𝑥𝑦 = 𝐴))
32biimpd 229 . . 3 (𝑥 = 𝐴 → (𝑦 = 𝑥𝑦 = 𝐴))
43eximdv 1916 . 2 (𝑥 = 𝐴 → (∃𝑦 𝑦 = 𝑥 → ∃𝑦 𝑦 = 𝐴))
51, 4mpi 20 1 (𝑥 = 𝐴 → ∃𝑦 𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator