|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax12indi | Structured version Visualization version GIF version | ||
| Description: Induction step for constructing a substitution instance of ax-c15 38890 without using ax-c15 38890. Implication case. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| ax12indn.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| ax12indi.2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) | 
| Ref | Expression | 
|---|---|
| ax12indi | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ((𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax12indn.1 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
| 2 | 1 | ax12indn 38944 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))) | 
| 3 | 2 | imp 406 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) | 
| 4 | pm2.21 123 | . . . . . 6 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 5 | 4 | imim2i 16 | . . . . 5 ⊢ ((𝑥 = 𝑦 → ¬ 𝜑) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) | 
| 6 | 5 | alimi 1811 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | 
| 7 | 3, 6 | syl6 35 | . . 3 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)))) | 
| 8 | ax12indi.2 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) | |
| 9 | 8 | imp 406 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) | 
| 10 | ax-1 6 | . . . . . 6 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 11 | 10 | imim2i 16 | . . . . 5 ⊢ ((𝑥 = 𝑦 → 𝜓) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) | 
| 12 | 11 | alimi 1811 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | 
| 13 | 9, 12 | syl6 35 | . . 3 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜓 → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)))) | 
| 14 | 7, 13 | jad 187 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → ((𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)))) | 
| 15 | 14 | ex 412 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ((𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |