Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ax12indi | Structured version Visualization version GIF version |
Description: Induction step for constructing a substitution instance of ax-c15 36830 without using ax-c15 36830. Implication case. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12indn.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
ax12indi.2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) |
Ref | Expression |
---|---|
ax12indi | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ((𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12indn.1 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
2 | 1 | ax12indn 36884 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))) |
3 | 2 | imp 406 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) |
4 | pm2.21 123 | . . . . . 6 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
5 | 4 | imim2i 16 | . . . . 5 ⊢ ((𝑥 = 𝑦 → ¬ 𝜑) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) |
6 | 5 | alimi 1815 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
7 | 3, 6 | syl6 35 | . . 3 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)))) |
8 | ax12indi.2 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜓)))) | |
9 | 8 | imp 406 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
10 | ax-1 6 | . . . . . 6 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
11 | 10 | imim2i 16 | . . . . 5 ⊢ ((𝑥 = 𝑦 → 𝜓) → (𝑥 = 𝑦 → (𝜑 → 𝜓))) |
12 | 11 | alimi 1815 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
13 | 9, 12 | syl6 35 | . . 3 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜓 → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)))) |
14 | 7, 13 | jad 187 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → ((𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)))) |
15 | 14 | ex 412 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ((𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |