Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ax12indn | Structured version Visualization version GIF version |
Description: Induction step for constructing a substitution instance of ax-c15 36487 without using ax-c15 36487. Negation case. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12indn.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
Ref | Expression |
---|---|
ax12indn | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2178 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ ¬ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑)) | |
2 | exanali 1860 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | hbn1 2143 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦) | |
4 | hbn1 2143 | . . . . 5 ⊢ (¬ ∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥 ¬ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
5 | ax12indn.1 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
6 | con3 156 | . . . . . . 7 ⊢ ((𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (¬ ∀𝑥(𝑥 = 𝑦 → 𝜑) → ¬ 𝜑)) | |
7 | 5, 6 | syl6 35 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (¬ ∀𝑥(𝑥 = 𝑦 → 𝜑) → ¬ 𝜑))) |
8 | 7 | com23 86 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → ¬ 𝜑))) |
9 | 3, 4, 8 | alrimdh 1864 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) |
10 | 2, 9 | syl5bi 245 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) |
11 | 1, 10 | syl5 34 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑦 ∧ ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) |
12 | 11 | expd 419 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (¬ 𝜑 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1536 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 |
This theorem is referenced by: ax12indi 36542 |
Copyright terms: Public domain | W3C validator |