MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16 Structured version   Visualization version   GIF version

Theorem axc16 2256
Description: Proof of older axiom ax-c16 36833. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.)
Assertion
Ref Expression
axc16 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc16
StepHypRef Expression
1 axc16g 2255 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  axc11rv  2260  ax12vALT  2469  bj-ax6elem1  34774  axc11n11r  34792  bj-axc16g16  34793
  Copyright terms: Public domain W3C validator