![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc16 | Structured version Visualization version GIF version |
Description: Proof of older axiom ax-c16 34699. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.) |
Ref | Expression |
---|---|
axc16 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc16g 2299 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 |
This theorem is referenced by: axc16nfOLD 2325 ax12vALT 2575 hbs1OLD 2577 exists2 2711 bj-ax6elem1 32987 axc11n11r 33009 bj-axc16g16 33010 |
Copyright terms: Public domain | W3C validator |