![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc16 | Structured version Visualization version GIF version |
Description: Proof of older axiom ax-c16 35051. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.) |
Ref | Expression |
---|---|
axc16 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc16g 2233 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-12 2163 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 |
This theorem is referenced by: axc11rv 2238 ax12vALT 2505 hbs1OLD 2507 exists2OLD 2694 bj-ax6elem1 33245 axc11n11r 33266 bj-axc16g16 33267 |
Copyright terms: Public domain | W3C validator |