Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc16 | Structured version Visualization version GIF version |
Description: Proof of older axiom ax-c16 36529. (Contributed by NM, 8-Nov-2006.) (Revised by NM, 22-Sep-2017.) |
Ref | Expression |
---|---|
axc16 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc16g 2261 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 |
This theorem is referenced by: axc11rv 2266 ax12vALT 2469 bj-ax6elem1 34485 axc11n11r 34503 bj-axc16g16 34504 |
Copyright terms: Public domain | W3C validator |