MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16g Structured version   Visualization version   GIF version

Theorem axc16g 2255
Description: Generalization of axc16 2256. Use the latter when sufficient. This proof only requires, on top of { ax-1 6-- ax-7 2012 }, Theorem ax12v 2174. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 18-Feb-2018.) Remove dependency on ax-13 2372, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 7-Jul-2021.) Shorten axc11rv 2260. (Revised by Wolf Lammen, 11-Oct-2021.)
Assertion
Ref Expression
axc16g (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 aevlem 2059 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑤)
2 ax12v 2174 . . . 4 (𝑧 = 𝑤 → (𝜑 → ∀𝑧(𝑧 = 𝑤𝜑)))
32sps 2180 . . 3 (∀𝑧 𝑧 = 𝑤 → (𝜑 → ∀𝑧(𝑧 = 𝑤𝜑)))
4 pm2.27 42 . . . 4 (𝑧 = 𝑤 → ((𝑧 = 𝑤𝜑) → 𝜑))
54al2imi 1819 . . 3 (∀𝑧 𝑧 = 𝑤 → (∀𝑧(𝑧 = 𝑤𝜑) → ∀𝑧𝜑))
63, 5syld 47 . 2 (∀𝑧 𝑧 = 𝑤 → (𝜑 → ∀𝑧𝜑))
71, 6syl 17 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  axc16  2256  axc16gb  2257  axc16nf  2258  axc11v  2259  axc16nfALT  2437
  Copyright terms: Public domain W3C validator