Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11n11r Structured version   Visualization version   GIF version

Theorem axc11n11r 36671
Description: Proof of axc11n 2424 from { ax-1 6-- ax-7 2008, axc9 2380, axc11r 2366 } (note that axc16 2262 is provable from { ax-1 6-- ax-7 2008, axc11r 2366 }).

Note that axc11n 2424 proves (over minimal calculus) that axc11 2428 and axc11r 2366 are equivalent. Therefore, axc11n11 36670 and axc11n11r 36671 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2428 appears slightly stronger since axc11n11r 36671 requires axc9 2380 while axc11n11 36670 does not).

(Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)

Assertion
Ref Expression
axc11n11r (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axc11n11r
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equcomi 2017 . . . . 5 (𝑥 = 𝑦𝑦 = 𝑥)
2 axc16 2262 . . . . 5 (∀𝑦 𝑦 = 𝑧 → (𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))
31, 2syl5 34 . . . 4 (∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
43spsd 2188 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
54exlimiv 1930 . 2 (∃𝑧𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
6 alnex 1781 . . 3 (∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 ↔ ¬ ∃𝑧𝑦 𝑦 = 𝑧)
7 ax6evr 2015 . . . . 5 𝑧 𝑥 = 𝑧
8 19.29 1873 . . . . 5 ((∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 ∧ ∃𝑧 𝑥 = 𝑧) → ∃𝑧(¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧))
97, 8mpan2 691 . . . 4 (∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑧(¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧))
10 axc9 2380 . . . . . . . . . . . 12 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
1110impcom 407 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥) → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
12 axc11r 2366 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧))
1311, 12syl9 77 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥) → (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧)))
14 aev 2058 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)
1513, 14syl8 76 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥) → (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)))
1615ex 412 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥))))
1716com24 95 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))))
1817imp 406 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)))
19 pm2.18 128 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥) → ∀𝑦 𝑦 = 𝑥)
2018, 19syl6 35 . . . . 5 ((¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
2120exlimiv 1930 . . . 4 (∃𝑧(¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
229, 21syl 17 . . 3 (∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
236, 22sylbir 235 . 2 (¬ ∃𝑧𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
245, 23pm2.61i 182 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178  ax-13 2370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator