Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11n11r Structured version   Visualization version   GIF version

Theorem axc11n11r 34792
Description: Proof of axc11n 2426 from { ax-1 6-- ax-7 2012, axc9 2382, axc11r 2366 } (note that axc16 2256 is provable from { ax-1 6-- ax-7 2012, axc11r 2366 }).

Note that axc11n 2426 proves (over minimal calculus) that axc11 2430 and axc11r 2366 are equivalent. Therefore, axc11n11 34791 and axc11n11r 34792 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2430 appears slightly stronger since axc11n11r 34792 requires axc9 2382 while axc11n11 34791 does not).

(Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)

Assertion
Ref Expression
axc11n11r (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axc11n11r
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equcomi 2021 . . . . 5 (𝑥 = 𝑦𝑦 = 𝑥)
2 axc16 2256 . . . . 5 (∀𝑦 𝑦 = 𝑧 → (𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))
31, 2syl5 34 . . . 4 (∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
43spsd 2182 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
54exlimiv 1934 . 2 (∃𝑧𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
6 alnex 1785 . . 3 (∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 ↔ ¬ ∃𝑧𝑦 𝑦 = 𝑧)
7 ax6evr 2019 . . . . 5 𝑧 𝑥 = 𝑧
8 19.29 1877 . . . . 5 ((∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 ∧ ∃𝑧 𝑥 = 𝑧) → ∃𝑧(¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧))
97, 8mpan2 687 . . . 4 (∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑧(¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧))
10 axc9 2382 . . . . . . . . . . . 12 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)))
1110impcom 407 . . . . . . . . . . 11 ((¬ ∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥) → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧))
12 axc11r 2366 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧))
1311, 12syl9 77 . . . . . . . . . 10 ((¬ ∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥) → (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧)))
14 aev 2061 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)
1513, 14syl8 76 . . . . . . . . 9 ((¬ ∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥) → (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)))
1615ex 412 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥))))
1716com24 95 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑧 → (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))))
1817imp 406 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)))
19 pm2.18 128 . . . . . 6 ((¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥) → ∀𝑦 𝑦 = 𝑥)
2018, 19syl6 35 . . . . 5 ((¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
2120exlimiv 1934 . . . 4 (∃𝑧(¬ ∀𝑦 𝑦 = 𝑧𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
229, 21syl 17 . . 3 (∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
236, 22sylbir 234 . 2 (¬ ∃𝑧𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥))
245, 23pm2.61i 182 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator