Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ax6elem1 | Structured version Visualization version GIF version |
Description: Lemma for bj-ax6e 34988. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ax6elem1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc9 2380 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))) | |
2 | axc16 2252 | . 2 ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | |
3 | 1, 2 | pm2.61d2 181 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 |
This theorem is referenced by: bj-ax6e 34988 |
Copyright terms: Public domain | W3C validator |