Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c4c711toc4 | Structured version Visualization version GIF version |
Description: Rederivation of axc4 2319 from axc5c4c711 41908. Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc5c4c711toc4 | ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (𝜑 → ∀𝑥(∀𝑥𝜑 → 𝜓))) | |
2 | ax-1 6 | . 2 ⊢ ((𝜑 → ∀𝑥(∀𝑥𝜑 → 𝜓)) → (∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥(∀𝑥𝜑 → 𝜓) → (𝜑 → ∀𝑥(∀𝑥𝜑 → 𝜓)))) | |
3 | axc5c4c711 41908 | . 2 ⊢ ((∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥(∀𝑥𝜑 → 𝜓) → (𝜑 → ∀𝑥(∀𝑥𝜑 → 𝜓))) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |