Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c4c711 | Structured version Visualization version GIF version |
Description: Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1799 as the inference rule. This proof extends the idea of axc5c711 36859 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.) |
Ref | Expression |
---|---|
axc5c4c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc4 2319 | . . 3 ⊢ (∀𝑦(∀𝑦𝜑 → 𝜓) → (∀𝑦𝜑 → ∀𝑦𝜓)) | |
2 | hbn1 2140 | . . . . 5 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑦 ¬ ∀𝑦(∀𝑦𝜑 → 𝜓)) | |
3 | axc7 2315 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑦(∀𝑦𝜑 → 𝜓)) | |
4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) |
5 | 2, 4 | alrimih 1827 | . . . 4 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) |
6 | ax-11 2156 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) |
8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (∀𝑦𝜑 → ∀𝑦𝜓)) |
9 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → ∀𝑦𝜓)) | |
10 | 9 | spsd 2182 | . . 3 ⊢ (¬ 𝜑 → (∀𝑦𝜑 → ∀𝑦𝜓)) |
11 | 10, 1 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓)) → (∀𝑦𝜑 → ∀𝑦𝜓)) |
12 | 8, 11 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: axc5c4c711toc5 41909 axc5c4c711toc4 41910 axc5c4c711toc7 41911 axc5c4c711to11 41912 |
Copyright terms: Public domain | W3C validator |