|   | Mathbox for Andrew Salmon | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c4c711 | Structured version Visualization version GIF version | ||
| Description: Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1794 as the inference rule. This proof extends the idea of axc5c711 38920 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| axc5c4c711 | ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axc4 2320 | . . 3 ⊢ (∀𝑦(∀𝑦𝜑 → 𝜓) → (∀𝑦𝜑 → ∀𝑦𝜓)) | |
| 2 | hbn1 2141 | . . . . 5 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑦 ¬ ∀𝑦(∀𝑦𝜑 → 𝜓)) | |
| 3 | axc7 2316 | . . . . . 6 ⊢ (¬ ∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑦(∀𝑦𝜑 → 𝜓)) | |
| 4 | 3 | con1i 147 | . . . . 5 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) | 
| 5 | 2, 4 | alrimih 1823 | . . . 4 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) | 
| 6 | ax-11 2156 | . . . 4 ⊢ (∀𝑦∀𝑥 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (¬ ∀𝑦(∀𝑦𝜑 → 𝜓) → ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓)) | 
| 8 | 1, 7 | nsyl4 158 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (∀𝑦𝜑 → ∀𝑦𝜓)) | 
| 9 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → ∀𝑦𝜓)) | |
| 10 | 9 | spsd 2186 | . . 3 ⊢ (¬ 𝜑 → (∀𝑦𝜑 → ∀𝑦𝜓)) | 
| 11 | 10, 1 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓)) → (∀𝑦𝜑 → ∀𝑦𝜓)) | 
| 12 | 8, 11 | ja 186 | 1 ⊢ ((∀𝑥∀𝑦 ¬ ∀𝑥∀𝑦(∀𝑦𝜑 → 𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑 → 𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: axc5c4c711toc5 44426 axc5c4c711toc4 44427 axc5c4c711toc7 44428 axc5c4c711to11 44429 | 
| Copyright terms: Public domain | W3C validator |