| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c4c711toc5 | Structured version Visualization version GIF version | ||
| Description: Rederivation of sp 2184 from axc5c4c711 44383. Note that ax6 2383 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1968 instead of ax6 2383, so that this rederivation requires only ax6v 1968 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc5c4c711toc5 | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6v 1968 | . . 3 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦))) | |
| 3 | ax-1 6 | . . . 4 ⊢ ((𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦)) → (∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦) → (𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦)))) | |
| 4 | axc5c4c711 44383 | . . . 4 ⊢ ((∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦) → (𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦))) → (∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (¬ 𝜑 → (∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦)) |
| 6 | 1, 5 | mtoi 199 | . 2 ⊢ (¬ 𝜑 → ¬ ∀𝑥𝜑) |
| 7 | 6 | con4i 114 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |