|   | Mathbox for Andrew Salmon | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc5c4c711toc5 | Structured version Visualization version GIF version | ||
| Description: Rederivation of sp 2182 from axc5c4c711 44425. Note that ax6 2388 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1967 instead of ax6 2388, so that this rederivation requires only ax6v 1967 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axc5c4c711toc5 | ⊢ (∀𝑥𝜑 → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax6v 1967 | . . 3 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦))) | |
| 3 | ax-1 6 | . . . 4 ⊢ ((𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦)) → (∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦) → (𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦)))) | |
| 4 | axc5c4c711 44425 | . . . 4 ⊢ ((∀𝑥∀𝑥 ¬ ∀𝑥∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦) → (𝜑 → ∀𝑥(∀𝑥𝜑 → ¬ 𝑥 = 𝑦))) → (∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (¬ 𝜑 → (∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦)) | 
| 6 | 1, 5 | mtoi 199 | . 2 ⊢ (¬ 𝜑 → ¬ ∀𝑥𝜑) | 
| 7 | 6 | con4i 114 | 1 ⊢ (∀𝑥𝜑 → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |